clc; Pm=100000; V=420; P=6; f=50; sfl=0.04; smT=0.2; //for part a disp('for part a'); Pg=Pm/(1-sfl); Ws=(4*%pi*f)/P; Tefl=Pg/Ws; //a=Tefl/Tem a=(1/(2/((sfl/smT)+(smT/sfl)))); Tem=a*Tefl; mprintf('Maximum Torque is %f Nm \n',Tem); //for part b disp('for part b'); //b=Test/Tem b=2/((1/smT)+(smT)); Test=b*Tem; mprintf('The starting Torque is %f Nm \n',Test) //for part c disp('for part c'); Prot=sfl*Pg; mprintf('Rotor Ohmic losses are %f W \n',Prot) //for part d disp('for part d'); //Output is proportional to (s(1-s))/r2 //Given conditions gives the equation as s1*s1-s1+0.0768 Q=[1 -1 0.0768]; R=roots(Q); s1=R(2); mprintf('Slip is %f \n',s1) //for part e disp('for part e'); Tefl=(Pm/(1-s1))/Ws; mprintf('full-load torque is %f Nm \n',Tefl) //for part f disp('for part f'); smT1=2*smT; mprintf('slip at maximum torque is %f',smT1);