clc; v=220; // rated voltage of alternator f=50; // frequency of supply r=0.06; // resistance per phase p=6; // number of poles i=40; // full load current pf=0.8; // lagging power factor vt=v/sqrt(3); // rated per phase voltage IF=[ 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 2.2 2.6 3 3.4]; EA=[ 29 58 87 116 146 172 194 232 261.5 284 300 310]; subplot(313); plot(IF,EA/sqrt(3)); xlabel('Field current'); ylabel('open circuit voltage'); title('open circuit characteristics'); IF1=[ 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 ]; ISC=[ 6.6 13.2 20 26.5 32.4 40 46.3 59 ]; subplot(323); plot(IF1,ISC); xlabel('Field current'); ylabel('short circuit current'); title('short circuit characteristics'); ZPF=[ 0 0 0 0 0 0 29 88 140 177 208 230]; subplot(333); plot(IF,ZPF); xlabel('Field current'); ylabel('terminal voltage'); title('full load zero power factor characteristics'); disp('EMF method'); // value of synchronous reactance is taken from given table EA1=[ 29 58 87 116 146 172 194 232] ZS=EA1./(ISC*sqrt(3)); disp('synchronous impedance (ohms) is'); disp(ZS); XS=ZS; // RS^2 is negligible disp('synchronous reactance (ohms) is'); disp(XS); xs=2.27; ia=i*(pf-%i*sqrt(1-pf^2)); // full load current in complex form E=vt+ia*(r+%i*xs); // Excitation voltage vr=floor(((abs(E)-vt)/vt)*100); printf('Voltage regulation is %f percent\n',vr); disp('Mmf method'); // with ia as reference E=vt*(pf+%i*sqrt(1-pf^2))+i*r; // Excitation voltage // from fig 5.30 ,E=127 V oc=1.69; // current for given excitation voltage obtained from open circuit characteristics sc=1.2; // field current required to circulate full load short circuit current al=atand(imag(E),real(E)); // angle between ia and E Ff=(oc*(-sind(al)+%i*cosd(al)))-sc; // field mmf printf('field mmf is %f A\n',abs(Ff)); // corresponding to Ff,E=163.5 v from O.C.C Ef=163.5; vr=((Ef-vt)/vt)*100; printf('Voltage regulation is %f percent\n',vr); disp('Zero power factor method'); // As per the description given in method vd=30; // voltage drop armature leakage reactance xa=vd/i; // armature leakage reactance // with ia as reference Er=vt*(pf+%i*sqrt(1-pf^2))+i*(r+%i*xa); // Excitation voltage // from fig 5.30 ,E=148.6 V oc=2.134; // current for given excitation voltage obtained from open circuit characteristics Fa=0.84; // armature mmf from potier triangle be=atand(imag(Er),real(Er)); // angle between ia and E Ff=(oc*(-sind(be)+%i*cosd(be)))-Fa; // field mmf printf('field mmf is %f A\n',abs(Ff)); // corresponding to Ff=2.797 A,E=169 v from O.C.C Ef=169; vr=((Ef-vt)/vt)*100; printf('Voltage regulation is %f percent\n',vr); disp('New A.S.A method'); // parameters needed in this method are calculated in part c id=0.366; // difference in field current between OCC and air gap line from fig 5.30 th=acosd(pf); ig=1.507; // field current corresponding to rated rated per phase voltage Ff=ig+sc*(%i*pf+sqrt(1-pf^2)); // field mmf without saturation Ff=abs(Ff)+id; // ield mmf with saturation printf('field mmf is %f A\n',Ff); // corresponding to Ff=2.791 A,E=169 v from O.C.C Ef=169; vr=((Ef-vt)/vt)*100; printf('Voltage regulation is %f percent\n',vr); disp('Saturated synchronous reactance method'); // for E=148.5 v (from part c), Era=179.5; // air line gap voltage k=Era/abs(Er); // saturation factor vdg=100.5; // voltage drop in unsaturated synchronous reactance xag=vdg/i; // unsaturated synchronous reactance xas=xa+((xag-xa)/k); // saturated synchronous reactance // with vt as reference Ef=vt+ia*(r+%i*xas); ok=2.15; // resultant mmf from fig 5.30 Ff=(abs(Ef)/abs(Er))*ok; printf('field mmf is %f A\n',Ff); // corresponding to Ff=2.78 A,E=169 v from O.C.C Ef=169; vr=((Ef-vt)/vt)*100; printf('Voltage regulation is %f percent\n',vr);