clc; n=800; // speed at which magnetization curve is given // case a v=600; // dc voltage source ra=0.3; // armature resistance rf=0.25; // field resistance T=300; // given torque VT=[ 200 375 443 485 510 518]; // terminal voltage IF=[ 15 30 45 60 75 90 ]; // field current EA1=VT+IF*ra; // generated EMF EA2=v-IF*(ra+rf); // generated EMF for v=600 V N2=n*(EA2./EA1); // speed for v= 600 V TE=(EA2.*IF.*EA1*60)./(2*%pi*n*EA2); //torque subplot(221); plot(TE,N2); xlabel('Torque(Nm)'); ylabel('speed(rpm)'); title('speed-torque'); subplot(222); plot(TE,IF); xlabel('Torque(Nm)'); ylabel('current(A)'); title('current-torque'); disp('from curves, for a torque of 300 Nm, speed is 940 rpm and current is 52.5 A'); disp('case b'); rd=0.25; // diverter resistance put in parallel with series combination of armature and field resistance ia1=30; ia2=60; // armature currents if1=ia1*(rd/(rd+rf)); // field current corresponding to ia1 Ea1=204.5; // given counter EMF for field current Ea2=v-ia1*(ra+((rd*rf)/(rd+rf))); // counter EMF for voltage supply of 600 V n2=n*(Ea2/Ea1); printf('Speed at %f A armature current is %f rpm\n',ia1,n2); T=(Ea1*60*ia1)/(2*%pi*n); printf('Torque at %f A armature current is %f Nm\n',ia1,T); if1=ia2*(rd/(rd+rf)); // field current corresponding to ia1 Ea1=384; // given counter EMF for field current Ea2=v-ia2*(ra+((rd*rf)/(rd+rf))); // counter EMF for voltage supply of 600 V n2=n*(Ea2/Ea1); printf('Speed at %f A armature current is %f rpm\n',ia2,n2); T=(Ea1*60*ia2)/(2*%pi*n); printf('Torque at %f A armature current is %f Nm\n',ia2,T); disp('case c'); ia3=75; // armature current t=0.8; // tapping percentage of field winding as a fration of full series turn ifl=t*ia3; // corresponding field current Ea=503; // given counter EMF for field current Ea2=v-ia3*(ra+t*rf); // counter EMF for voltage supply of 600 V n2=n*(Ea2/Ea); printf('Speed at %f A armature current is %f rpm\n',ia3,n2); T=(Ea*60*ia3)/(2*%pi*n); printf('Torque at %f A armature current is %f Nm\n',ia3,T);