clc; B=[ 0.2 0.4 0.6 0.8 1 1.2]; H=[ 50 100 160 225 300 400]; plot(H,B); xlabel('magnetic field intensity'); ylabel('magnetic flux density'); title('B-H curve'); p=0.2; // force exerted by spring g1=0.5*10^-2; // air gap length g2=0.1*10^-2; // reduced gap length after coil is energised n=2000; // coil turns l=0.2; // mean length of magnetic iron path A=0.2*10^-4; // area of cross-section g=9.81; // acceleration due to gravity l1=6; // gap length l2=3; // gap length between spring and core uo=4*%pi*10^-7; // free space permeability disp('case a'); fe=(p*g*l2)/l1; // electromagnetic torque Bg=sqrt((2*fe*uo)/A); // air gap flux density printf('Air gap flux density is %f T\n',Bg); // corresponding to value of Bg from B-H curve H is Hg=87.7; // magnetic flux intensity ATi=l*Hg; // total ampere turn for iron path ATg=(Bg*g1)/uo; // ampere turn for air gap AT=ATi+ATg; // total ampere turns ie=AT/n; printf('Exciting current required to close the armature relay is %f A\n',ie); disp('case b'); ATg=(Bg*g2)/uo; // ampere turn for air gap AT=ATi+ATg; // total ampere turns ie=AT/n; printf('Exciting current required to keep the armature closed is %f A\n',ie);