clc; //V/f ratio is same for every case hence hysteresis losses and eddy current losses can be calculated separately // data for column 1 vt1=214; // terminal voltage f1=50; // frequency in hz p1=100; // power input in Watts vp1=vt1; // per phase voltage pv1=p1/3; // per phase power pc1=pv1/f1; // core loss per cycle // data for column 2 vt2=171; // terminal voltage f2=40; // frequency in hz p2=72.5; // power input in Watts vp2=vt2; // per phase voltage pv2=p2/3; // per phase power pc2=pv2/f2; // core loss per cycle // data for column 3 vt3=128; // terminal voltage f3=30; // frequency in hz p3=50; // power input in Watts vp3=vt3; // per phase voltage pv3=p3/3; // per phase power pc3=pv3/f3; // core loss per cycle // data for column 4 vt4=85.6; // terminal voltage f4=20; // frequency in hz p4=30; // power input in Watts vp4=vt4; // per phase voltage pv4=p4/3; // per phase power pc4=pv4/f4; // core loss per cycle // Values of k1 and k2 have been obtained from graph k1=0.39; k2=(pc1-k1)/50; F1=60; //frequency at which losses has to be calculated ph1=k1*F1; //per phase hysteresis loss at 60 hz pe1=k2*F1^2; // per phase eddy curent loss at 60 hz pht=3*ph1; // total hysteresis loss pet=3*pe1; // total eddy current loss printf('Total hysteresis and eddy current losses at 60 hz are %f W and %f W respectively\n',pht,pet); F2=40; //frequency at which losses has to be calculated ph2=k1*F2; //per phase hysteresis loss at 40 hz pe2=k2*F2^2; // per phase eddy curent loss at 40 hz pht=3*ph2; // total hysteresis loss pet=3*pe2; // total eddy current loss printf('Total hysteresis and eddy current losses at 40 hz are %f W and %f W respectively',pht,pet);