//Fluid system - By - Shiv Kumar //Chapter 4 - Pelton Turbine (Impulse Turbine) //Example 4.8 clc clear //Given Data:- Cv=0.97; //Co-efficient of Velocity H_l=400; //Head at lake, m d=80; //Diameter of Jet, mm D_pipe=0.6; //Diameter of pipe, m l=4; //Length of pipe, m f_dash=0.032; //Friction factor AoD=165; //Angle of Deflection, degrees beta_o=180-AoD; //degrees // As bucket runs at 0.48 Jet speed u_by_Vi=0.48; //u/Vi Vel_per=15; //percentage by which velocity is reduced eta_m=90/100; //Mechanical Efficiency //Data Used:- rho=1000; //Density of water, kg/m^3 g=9.81; //Acceleration due to gravity, m/s^2 //Computations:- d=d/1000; //m l=l*1000; //m Vro_by_Vri=1-Vel_per/100; //Vro/Vri //using continuity equation, V_by_Vi=(d/D_pipe)^2; //V/Vi Vi=sqrt((2*g*H_l)/(1/Cv^2+f_dash*l*V_by_Vi^2/D_pipe)); //m/s Vwi=Vi; u=Vi*u_by_Vi; //m/s ui=u; uo=u; Vri=Vi-ui; //m/s Vro=Vri*Vro_by_Vri; //m/s Vrwo=Vro*cosd(beta_o); //m/s //(i) Flow Rate, Q Q=(%pi/4)*d^2*Vi; //m^3/s //(ii) Shaft Power, P Vwo=uo-Vrwo; //m/s Pr=rho*Q*(Vwi-Vwo)*u/1000; //Power developed by the runner, kW P=eta_m*Pr; //kW //Results:- printf("Flow Rate, Q=%.4f m^3/s \n", Q) //The answer vary due to round off error printf("Shaft power, P=%.2f kW", P) //The answer vary due to round off error