//Fluid system - By - Shiv Kumar //Chapter 4 - Pelton Turbine (Impulse Turbine) //Example 4.10 clc clear //Given Data:- N=300; //Speed of runner, rpm H=510; //Head, m d=200; //Diameter of the Jet, mm AoD=165; //Angle of Deflection, degrees Vel_per=15; //percentage by which velocity is reduced //Data Used:- rho=1000; //Density of water, kg/m^3 g=9.81; //Acceleration due to gravity, m/s^2 Cv=0.98; Ku=0.46; //Computations:- d=d/1000; //m beta_O=180-AoD; //degrees Vro_by_Vri=1-Vel_per/100; //Vro/Vri Vi=Cv*sqrt(2*g*H); //m/s Vwi=Vi; ui=Ku*sqrt(2*g*H); //m/s uo=ui; u=ui; Vri=Vi-ui; //m/s Vro=Vri*Vro_by_Vri; //m/s Vrwo=Vro*cosd(beta_O); //m/s Vwo=uo-Vrwo; //m/s //(i) Water power available at inlet of turbine, P Q=(%pi/4)*d^2*Vi; //m^3.s P=(1/2)*rho*Q*Vi^2/1000; //kW //(ii)Resultant force on the bucket, F F=rho*Q*(Vwi-Vwo)/1000; //kN //(iii)Overall Efficiency, eta_o eta_H=F*u/P; //Hydraulic efficiency //Assume, eta_V=100/100; //Volumetric efficiency is 100% eta_m=98/100 //Mechanical Efficiency is 98% eta_O=eta_V*eta_H*eta_m*100; //In percentage //Results:- printf("(i)Water power available at inlet of turbine=%.2f kW \n", P) //The answer provided in the Textbook is wrong printf("(ii)Resultant force on the bucket, F=%.3f kN \n", F) //The answer vary due to round off error printf("(iii)Overall efficiency, eta_O=%.2f percent", eta_O) //The answer vary due to round off error