// Ex 40 Page 384 clc;clear;close; // Given KVA=4;//kVA V1=200//V V2=400//V f=50;//Hz Io1=0.8;//A P1=70;//W Vs2=17.5;//V Is2=9;//A P2=50;//W //full load I_loss=P1;//W I2=KVA*1000/V2;//A Cu_loss=(I2/Is2)**2*P2;//W Zo2=Vs2/Is2;//ohm Ro2=P2/Is2**2;//ohm Xo2=sqrt(Zo2**2-Ro2**2);//ohm //(a) printf("Full load efficiency : ") //unity pf pf=1;//power factor Output=KVA*pf;//kW Losses=Cu_loss+I_loss;//W eta=Output*1000/(Output*1000+Losses)*100;//% printf("\n at unity power factor = %.1f percent",eta) //0.8 pf pf=0.8;//power factor Output=KVA*pf;//kW eta=Output*1000/(Output*1000+Losses)*100;//% printf("\n at 0.8 power factor = %.1f percent",eta) //(b) //(i) unity pf Vd=I2*Ro2;//V V22=V2-Vd;//V printf("\n\n Voltage drop at unity pf = %.1f V",V22) //(i) 0.8 pf lagging pf=0.8;//power factor Vd=I2*(Ro2*pf+Xo2*sqrt(1-pf**2));//V V22=V2-Vd;//V printf("\n Voltage drop at 0.8 pf lagging = %.1f V",V22) //(i) 0.8 pf leading pf=0.8;//power factor Vd=I2*(Ro2*pf-Xo2*sqrt(1-pf**2));//V V22=V2-Vd;//V printf("\n Voltage drop at 0.8 pf leading = %.f V",V22)