// Example 32_21 clc;funcprot(0); //Given data // L=350+10t-t^2; // Calculation // Differentiating L with respect to t, we get 10-2t=0 t=10/2;// hrs L_max=350+(10*t)-t^2;// The maximum load occurs at 5 th hour during the day in MW t_0=0; t_1=24;// Limits of integration L_av=(1/24)*integrate('(350+(10*t)-t^2)','t',t_0,t_1); F_l=L_av/L_max;// Load factor printf('\nMaximum load,L_max=%0.0f MW \nLoad factor of the plant=%0.4f',L_max,F_l); // Load duration curve is the representation of load with respect to time t=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24];// Time in hours for(i=1:25) L(i)=((350+(10*t(i))-t(i)^2)); end T=[0 12 24]; L_max=[L_max L_max L_max]; subplot(2,1,1); plot(t',L,'g',T',L_max','--'); xlabel('t'); ylabel('L'); xtitle('Load curve'); // Load duration curve is the representation of load with respect to time is decending order. T=[24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0];// Time in hours for(j=1:25) L(j)=((350+(10*T(j))-T(j)^2)); end subplot(2,1,2); plot(t',L,'r'); xtitle('Load duration curve'); xlabel('t'); ylabel('L');