// Example 32_2 clc;funcprot(0); //Given data T_1=[0,6];// Time in hours T_2=[6,10];// Time in hours T_3=[10,12];// Time in hours T_4=[12,16];// Time in hours T_5=[16,20];// Time in hours T_6=[20,22];// Time in hours T_7=[22,24];// Time in hours L=[20,50,60,40,80,70,40];//load in kW //Calculation //(a) L_p=80;// Peak load in kW E_g=(L(1)*(T_1(2)-T_1(1)))+(L(2)*(T_2(2)-T_2(1)))+(L(3)*(T_3(2)-T_3(1)))+(L(4)*(T_4(2)-T_4(1)))+(L(5)*(T_5(2)-T_5(1)))+(L(6)*(T_6(2)-T_6(1)))+(L(7)*(T_7(2)-T_7(1)));//Energy generated in MW-hrs L_a=E_g/24;// Average load in kW F_l=L_a/L_p;// Load factor T=[0 0 6 6 10 10 12 12 16 16 20 20 22 22 24 24];//Time in hours for load curve L=[0 20 20 50 50 60 60 40 40 80 80 70 70 40 40 100];// Load in kW for load curve xlabel('TIME IN HOURS'); ylabel('LOAD IN kW'); title('Fig.32.2 Load curve'); plot(T,L,'b'); printf('\n(a)Load factor=%0.3f',F_l); //(b) L_p=20;// Peak load in kW E_g=(20*4)+(10*2);//MW-hrs T_s=6;//Time during which stand by unit remains in operation hours (from the load curve) L_a=E_g/T_s; F_l=L_a/L_p;// Load factor printf('\n(b)Load factor=%0.3f',F_l); x=[16 22];// Time n hours L=[60 60];// Load in MW plot(x,L,'r-.'); legend('LOAD CURVE'); // The answer vary due to round off error