// Example 22_15 clc;funcprot(0); //Given data T_1=400;// °C p_1=40;// bar p_2=2;// bar p_3=0.5;// bar p_4=0.05;// bar n_t1=75/100;// The isentropic efficiency of the first stage of the turbine n_t2=80/100;// The isentropic efficiency of the second stage of the turbine n_t3=85/100;// The isentropic efficiency of the third stage of the turbine m_s=10;// The steam flow in kg/sec // Calculation // From h-s chart: h_1=3210;// kJ/kg h_2a=2562;// kJ/kg h_2=h_1-((n_t1)*(h_1-h_2a));// kJ/kg h_3a=2508;// kJ/kg h_3=h_2-((n_t2)*(h_2-h_3a));// kJ/kg h_4a=2232;// kJ/kg h_4=h_3-((n_t3)*(h_3-h_4a));// kJ/kg // From steam tables h_f8=502;// kJ/kg(2 bar) h_f10=h_f8;// kJ/kg h_f6=339;// kJ/kg(0.5 bar) h_f7=h_f6;// kJ/kg h_f9=h_f6;// kJ/kg h_f5=136;// kJ/kg(0.05 bar) //Assume m_1=y(1);m_2=y(2) function[X]=mass(y) X(1)=(y(1)*(h_2-h_f10))-((1-y(1))*(h_f8-h_f7)); X(2)=(y(2)*(h_3-h_f9))-((1-y(1)-y(2))*(h_f6-h_f5)); endfunction y=[0.01 0.01]; z=fsolve(y,mass); m_1=z(1);// kJ/kg m_2=z(2);// kJ/kg W=(h_1-h_2)+((1-m_1)*(h_2-h_3))+((1-m_1-m_2)*(h_3-h_4));// kJ/kg P=W*m_s;// Power developed by the turbine in kW Q_s=h_1-h_f10;// Heat supplied per kg of steam in kJ/kg n_th=(W/Q_s)*100;// Thermal efficiency of the cycle in % printf('\n(a)Steam bled for regenerative heaters per kg of steam to turbine,m_1=%0.4f kJ/kg & m_2=%0.4f kJ/kg \n(b)Power developed by the turbine=%0.0f kW \n(c)Thermal efficiency of the cycle=%0.2f percentage',m_1,m_2,P,n_th); // The answer provided in the textbook is wrong