// Example 22_11 clc;funcprot(0); //Given data P=27000;// kW p_1=60;// bar T_1=450;// °C p_v=707.5;// The condenser vaccum in mm of Hg p_2=3;//bar n_t=87;// The turbine efficiency n_b=90;// The boiler efficiency in % n_a=95;//The alternator efficiency in % n_m=98;//The mechanical efficiency in % p_b=760;// cm of Hg //Calculation p_3=((p_b-p_v)/p_b)*1.013;//The condenser pressure bar // From h-s chart: h_1=3296;// kJ/kg h_2a=2606;// kJ/kg h_3a=2163;// kJ/kg h_2=h_1-((n_t/100)*(h_1-h_2a));// kJ/kg h_3=h_2-((n_t/100)*(h_2-h_3a));// kJ/kg //From steam tables h_f4=162;// kJ/kg (at 0.07 bar) h_f5=558;// kJ/kg (at 3 bar) //Assume m=y(1) function[X]=bled(y) X(1)=((1-y(1))*(h_f5-h_f4))-(y(1)*(h_2-h_f5)); endfunction y=[0.1] z=fsolve(y,bled); m=z(1);// kg/kg of steam generated W=(h_1-h_2)+((1-m)*(h_2-h_3));//Work developed per kg of steam in kJ/kg W_act=(P/((n_a/100)*(n_m/100)));//Actual work developed by the turbine kW m_s=(W_act/W)*(3600/1000);// Steam generated per second in tons/hr P_p=P*(10/100);// Pump power in kW P_net=P*(1-(10/100));// Net power available in kW Q_s=((m_s*1000*(h_1-h_f5))/((n_b/100)*3600));// Heat supplied in the boiler in kW n_o=(P_net/Q_s)*100;// The overall efficiency of the plant in % printf('\n(a)The steam bled per kg of steam supplied to the turbine=%0.3f kg/kg of steam generated \n(b)Steam generated per hour=%0.1f tons/hr \n(c)The overall efficiency of the plant=%0.1f percentage',m,m_s,n_o); // The answer vary due to round off error