// Example 2_14 clc;funcprot(0); //Given data m=[1 2 3 4 5 6 7 8 9 10 11 12];// Month D=[80 50 40 20 0 100 150 200 250 120 100 80];// Discharge in millions of m^3 per month H=100;// Available head in m n_o=80/100;// Overall efficiency of the generation g=9.81;// The acceleration due to gravity in m/s^2 // Calculation // (a) Q_a1=(D(1)+D(2)+D(3)+D(4)+D(5)+D(6)+D(7)+D(8)+D(9)+D(10)+D(11)+D(12))/12;// The average monthly flow in millions of m^3/month m_1=[0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12];// Month for hydrograph D_1=[80 80 50 50 40 40 20 20 0 0 100 100 150 150 200 200 250 250 120 120 100 100 80 80 260];// Discharge in millions of m^3 per month Q_a=[Q_a1,Q_a1];// Mean flow m=[0,12];// month xlabel('Month'); ylabel('Discharge in millions of m^3 per month'); subplot(2,1,1); plot(m_1',D_1','b',m',Q_a','r-'); a=gca(); a.x_ticks.labels=["0","J","F","M","A","M","J","J","A","S","O","N","D"]; a.x_ticks.locations=[0;1;2;3;4;5;6;7;8;9;10;11;12]; legend('Hydrograph','Mean flow'); D=[0 20 40 50 80 100 120 150 200 220];// Discharge in millions of m^3 per month M=[12 11 10 9 8 7 4 3 2 1];// Total number of months during which flow is available for(i=1:10) T(i)=(M(i)/12)*100; end subplot(2,1,2); xlabel('Percentage of time'); ylabel('Discharge in millions of cu.m.month'); plot(T,D','b'); legend('Flow duration curve'); m=((Q_a1*10^6)/(30*24*3600));// The average flow available in m^3/sec P=(((Q_a1*10^6*1000*g*H)/(30*24*3600*1000))*(n_o/1000));// Average kW available in MW printf('\nAverage kW available at the site=%0.3f MW',P); // The answer provided in the textbook is wrong