//Example 8_4 clc;clear;funcprot(0); // Given values P=1;// atm T=35;// degree celsius L=150;// m h_L=20;// m v=0.35;// m^3/s g=9.81;// m/s^2 //Properties rho=1.145;// kg/m^3 mu=1.895*10^-5;// kg/m.s nu=1.655*10^-5;// m^2/s //Calculation // V=y(1); Re=y(2); f=y(3);D=y(4) function[X] = Diameter(y) X(1)=(v/(%pi*(y(4)^2)/4))-y(1); X(2)=((y(1)*y(4))/(nu))-y(2); X(3)=(-2.0*log10(2.51/(y(2)*sqrt(y(3)))))-(1/sqrt(y(3))); X(4)=(y(3)*(L/(y(4))*((y(1)^2)/(2*g))))-h_L; endfunction y=[1 100000 0.01 0.1]; z=fsolve(y,Diameter); V=z(1);// m/s Re=z(2);// Reynolds number f=z(3); D=z(4);// m printf('The minimum diameter of the duct,D=%0.3f m\n',D); //The diameter can also be determined directly from the third Swamee–Jain formula to be y=0; D=0.66*(((y^1.25*((L*v^2)/(g*h_L))^4.75))+(nu*v^9.4*(L/(g*h_L))^5.2))^0.04; printf('The diameter can also be determined directly from the third Swamee–Jain formula to be D=%0.3f m\n',D);