//Example 8_3 clc;clear;funcprot(0); // Given values rho=62.36;// lbm/ft^3 mu=7.536*10^-4;// lbm/ft.s D=2/12;// ft v=0.2;// ft^3/s L=200;// ft g=32.2;// ft/s^2 //Calculation A_c=(%pi*D^2)/4;// ft^2 V=v/A_c;// Average velocity in ft/s Re=(rho*V*D)/(mu);// Reynolds number // Re is greater than 4000. Therefore, the flow is turbulent. The relative roughness of the pipe is calculated using Table 8–2, (epsilon/D)=e E=0.000007; e=E/(D); //To avoid any reading error, we determine f from the Colebrook equation:(1/sqrt)=-2.0*log10*((e/3.7)+(2.51/(Re*sqrt(f))) // f=y(1) function[X]=frictionfactor (y) X(1)=(-2.0*log10((0.000042/3.7)+(2.51/(126400*sqrt(y(1))))))-(1/sqrt(y(1))); endfunction y=[0.001]; z=fsolve(y,frictionfactor);// Friction factor gradP_L1=(z*(L/D)*(rho*(V^2)/2))*(1/32.2);// lbm/ft^2 gradP_L=gradP_L1/144;// psi printf('The pressure drop,gradP_L=%0.0f lbf/ft^2=%0.1f psi \n',gradP_L*144,gradP_L); h_L=(z*(L/D)*(V^2/(2*g)));// ft printf('The head loss,h_L=%0.1f ft\n',h_L); W_p=(v*gradP_L1)/0.737;// W printf('The required power input,W_pump=%0.0f W \n',W_p); // The answer vary due to round off error