//Example 8_1 clc;clear;funcprot(0); // Given values P_i=745; P_o=97;//The pressure at the pipe inlet and outlet in kPa D=0.05;// m L=40;// m //Properties rho=888;//kg/m^3 mu=0.800;// kg/m.s g=9.81;// m/s^2 //Calculation gradP=P_i-P_o;//kPa A_c=(%pi*D^2)/4;// m^2 //(a) //For the horizontal case, theta=0 theta=0;// degree V=((((gradP*1000)-(rho*g*L*sind(theta)))*(%pi*D^4))/(128*mu*L));// m^3/s V_horiz=V;// m^3/s printf('(a)The flow rate for the horizontal case,theta=0,V_horiz=%0.5f m^3/s\n',V_horiz); //(b) // For uphill flow with an inclination of 15°, we have theta=+15°, theta_1=+15;// degree V=((((gradP*1000)-(rho*g*L*sind(theta_1)))*(%pi*D^4))/(128*mu*L)); V_uphill=V;//m^3/s printf('(b)The flow rate for uphill flow with an inclination of 15°,V_uphill=%0.5f m^3/s\n',V_uphill); //(c) //For downhill flow with an inclination of 15°,we have theta=-15°, theta_2=-15;//degree V=((((gradP*1000)-(rho*g*L*sind(theta_2)))*(%pi*D^4))/(128*mu*L)); V_downhill=V;//m^3/s printf('(c)The flow rate for downhill flow with an inclination of 15°,V_downhill=%0.5f m^3/s\n',V_downhill); V_avg=(V_downhill/A_c); Re=(rho*V_avg*D)/mu; disp("Re=100.Re<2300.Therefore, the flow is laminar for all three cases and the analysis is valid.");