//Example 14-12 clc;clear; // Properties rho_w=998;// kg/m^3 //Given values r_2=2.50;// m r_1=1.77;// m b_2=0.914; // m b_1=2.62; // m n=120; // rpm omega=12.57;// rad/s alpha_2=33;// degree v=599;// m^3/s g=9.81;// m/s^2 //Calculation //(a) V_2n=(v/(2*%pi*r_2*b_2));//The normal component of velocity at the inlet in m/s V_2t=V_2n*tand(alpha_2);//The tangential velocity component at the inlet in m/s beta_2=atand(V_2n/((omega*r_2)-(V_2t))); disp('(a) alpha=10 degree') printf('The runner leading edge angle at runner inlet, beta_2=%0.1f degree\n',beta_2); //Equations 1 through 3 are repeated for the runner outlet, with the following results: V_1n=(v/(2*%pi*r_1*b_1));// alpha_1=10;// degree V_1t=V_1n*tand(alpha_1); beta_1=atand(V_1n/((omega*r_1)-(V_1t))); printf(' The runner blade trailing edge angle , beta_1=%0.1f degree\n',beta_1); W_shaft=(rho_w*omega*v*((r_2*V_2t)-((r_1*V_1t))))/10^6; W_shaft_hp=(W_shaft)*1341.02209; printf(' The shaft output power,W_shaft =%0.2e hp\n',W_shaft_hp); // Assume Efficiency of turbine=100% // bhp=W_shaft H_1=(W_shaft)*10^6/(rho_w*g*v);// m printf(' The required net head,H =%0.1f m\n',H_1); // disp('(b) alpha=0 degree') alpha_11=0;// degree V_11t=V_1n*tand(alpha_11); beta_11=atand(V_1n/((omega*r_1)-(V_11t)));// degree printf(' The runner blade trailing edge angle , beta_1=%0.1f degree\n',beta_11); W_shaft1=(rho_w*omega*v*((r_2*V_2t)-((r_1*V_11t))))/10^6;// MW W_shaft1_hp=(W_shaft1)*1341.02209;// hp printf(' The shaft output power,W_shaft =%0.2e hp\n',W_shaft1_hp); H_2=(W_shaft1)*10^6/(rho_w*g*v);// m printf(' The required net head,H =%0.1f m\n',H_2); // disp('(c) alpha=-10 degree') alpha_12=-10;// degree V_12t=V_1n*tand(alpha_12); beta_12=atand(V_1n/((omega*r_1)-(V_12t))); printf(' The runner blade trailing edge angle , beta_1=%0.1f degree\n',beta_12); W_shaft12=(rho_w*omega*v*((r_2*V_2t)-((r_1*V_12t))))/10^6;// MW W_shaft12_hp=(W_shaft12)*1341.02209;// hp printf(' The shaft output power,W_shaft =%0.2e hp\n',W_shaft12_hp); H_3=(W_shaft12)*10^6/(rho_w*g*v);// m printf(' The required net head,H =%0.1f m\n',H_3); alpha=[33 0 -10]; bhp=[W_shaft W_shaft1 W_shaft12]; H=[H_1 H_2 H_3]; plot(alpha,H,'r'); legend('H'); xlabel('alpha,degrees'); ylabel('H,m'); set(gca(),"data_bounds",matrix([-30,30,0,100],2,-1)); a = gca(); a.y_location = "left"; a.filled = "on"; a.axes_visible = ["on","on","on"]; a.font_size = 1; b = newaxes(); b.y_location = "right"; b.filled = "off"; b.axes_visible = ["off","on","on"]; b.axes_bounds = a.axes_bounds; b.y_label.text = "bhp,MW"; b.font_size = a.font_size plot(alpha,bhp,'g'); legend(['bhp'],"in_upper_left"); set(gca(),"data_bounds",matrix([-30,30,0,700],2,-1));