// Example 12_9 clc;clear;funcprot(0); //From example 12_7 //Given values P_0=1000;// kPa; T_0=800;// K Ma_1=2;// Exit Mach number a=20;// Throat area in cm^2 //Properties R=0.287;// kJ/kg.k C_p=1.005;// kJ/kg.k k=1.4;//The specific heat ratio of air // Calculation //(a) //From example 12_7 P_01=1.0;// MPa P_1=0.1278; // MPa T_1=444.5;// K rho_1=1.002;// kg/m^3 // From table A-14,For Ma_1=2,we read Ma_2=0.5774 P_02=0.7209*P_01;// MPa printf('(a)The stagnation pressure,P_02=%0.3f MPa\n',P_02); P_2=4.5000*P_1;// MPa printf('The static pressure,P_2=%0.3f MPa\n',P_2); T_2=1.6875*T_1;// K printf('The static temperature,T_2=%0.0f K\n',T_2); rho_2=2.6667*rho_1;// kg/m^3 printf('The static density,rho_2=%0.2f kg/m^3\n',rho_2); //(b) //gradS=s2-s1 gradS=(C_p*(log(T_2/T_1)))-(R*log((P_2/P_1))); printf('(b)The entropy change across the shock,s2-s1=%0.4f kJ/kg.K\n',gradS); //(c) c_2=sqrt(k*R*T_2*1000);// The speed of sound at the exit conditions in m/s V_2=Ma_2*c_2; printf('(c)The exit velocity,V_2=%0.0f m/s\n',V_2); //(d) //The mass flow rate in this case is the same as that determined in Example 12_7: V_1=517.5;// m/s rho_c=2.761;// kg/m^3 m=rho_c*(a*10^-4)*V_1;// kg/s printf('(d)The mass flow rate,m=%0.2f kg/s\n',m);