//Example 11_5 clc;clear; //Properties rho_ag=1.20;// kg/m^3 rho_ac=0.312;// kg/m^3 C_Lmax1=1.52;// The maximum lift coefficient of the wing with flaps C_Lmax2=3.48;// The maximum lift coefficient of the wing without flaps //Given values m=70000;// kg A=150;// m^2 V=558;/// km/h g=9.81;// m/s^2 // Calculation //(a) W=m*g;// N V=V/3.6;// m/s V_min1=sqrt((2*W)/(rho_ag*C_Lmax1*A));// m/s V_min2=sqrt((2*W)/(rho_ag*C_Lmax2*A));// m/s V_1s=1.2*V_min1*3.6;// 1 m/s=3.6 km/h printf('(a)Without flaps:V_min1,safe =%0.0f km/h\n',V_1s); V_2s=1.2*V_min2*3.6;// 1 m/s=3.6 km/h printf(' With flaps:V_min2,safe =%0.0f km/h\n',V_2s); //(b) F_l=W;// N C_l=F_l/(1/2*rho_ac*V^2*A);// The lift coefficient //For the case with no flaps, the angle of attack corresponding to this value of C_L is determined from Fig. 11–45 to be alpha=10;// The angle of attack in degree printf('(b)The angle of attack,alpha~=%0.0f degree\n',alpha); //(c) // From Fig.11-45,C_d~=0.03 C_d=0.03;// The drag coefficient F_d=(C_d*A*rho_ac*(V^2/2))/1000;//kN P=F_d*V;// kW printf('(c)The power that needs to be supplied to provide enough thrust to overcome wing drag,P=%0.0f kW\n',P); // The answer vary due to round off error