// Example 10_12 clc;clear;funcprot(0); //Given data V=10.0;// m/s L=1.52;// m //Properties nu=1.516*10^-5;// m^2/s //Calculation //(a) x=L;// m Re_x=(V*x)/nu;// Reynolds number L=L*1000;// mm x=[0,L];// mm //For laminar case for(i=1:2) del_laminar(i)=(4.91*x(i))/sqrt(Re_x);// mm del_turbulenta(i)=(0.16*x(i))/(Re_x)^(1/7);// mm del_turbulentb(i)=(0.38*x(i))/(Re_x)^(1/5);// mm end xlabel('x,m'); ylabel('delta,mm'); x=x/1000; plot(x,del_laminar,'b',x,del_turbulenta,'r',x,del_turbulentb,'g'); legend(['Laminar','Turbulent(a)','Turbulent(b)'],"in_upper_left"); //(b) // For laminar boundary layer, C_fxl=0.664/sqrt(Re_x); // For turbulent boundary layer, C_fxt=0.027/(Re_x)^(1/7); printf('\nThe laminar boundary layer thickness at this same x-location=%0.2f mm \nThe turbulent boundary layer thickness at this same x-location=%0.1f mm \nThe local skin friction coefficient for the laminar boundary layer=%0.2e \nThe local skin friction coefficient for the turbulent boundary layer=%0.1e',del_laminar(2),del_turbulenta(2),C_fxl,C_fxt); // The answer vary due to round off error