// Ex4_2 Page:59 (2014) clc;clear; e = 1.6e-019; // Energy conversion factor, J/eV m = 9.1e-031; // Mass of an electron, kg h = 6.626e-034; // Planck's constant, Js c = 3e+08; // Speed of light in vacuum, m/s // Non-relativistic case: E = 1; // Kinetic energy of an electron, eV p = sqrt(2*m*E*e); // Momentum of the electron, kg-m/s lambda = h/p*1e+09; // de-Broglie wavelength of electron, nm printf("\nNon-relativistic Case:\nThe de-Broglie wavelength of electron = %3.1f nm", lambda); // Relativistic case: KE = 100; // Kinetic energy of an electron, MeV p = KE*e/c*1e+06; // Relativistic momentum of the electron, kg-m/s lambda = h/p; // de-Broglie wavelength of electron, m printf("\nRelativistic case:\nThe de-Broglie wavelength of electron = %5.3e m", lambda); // Result // Non-relativistic Case: // The de-Broglie wavelength of electron = 1.2 nm // Relativistic case: // The de-Broglie wavelength of electron = 1.242e-14 m