clear// //Variable Declaration Ix_bar=37.37*10**6 //Moment of inertia in mm^4 Iy_bar=21.07*10**6 //Moment of inertia in mm^4 Ixy_bar=-16.073*10**6 //Moment of inertia in mm^4 //Calculations b=(Ix_bar+Iy_bar)*0.5 //Parameter for the circle in mm^4 R=sqrt(((Ix_bar-Iy_bar)*0.5)**2+Ixy_bar**2) //Radius of the Mohr's Circle in mm^4 //Part 1 I1=b+R //MI in mm^4 I2=b-R //MI in mm^4 theta1=asin(abs(Ixy_bar)/R)*180*%pi**-1*0.5 //Angle in degrees theta2=theta1+90 //Angle in degrees //Part 2 alpha=(100-theta1*2)*0.5 //Angle in degrees Iu=(b)+R*(cos(alpha*%pi*180**-1)) //MI in mm^4 Iv=(b)-R*(cos(alpha*%pi*180**-1)) //MI in mm^4 Iuv=R*sin(2*alpha*%pi*180**-1) //MI in mm^4 //Result printf("\n The Principal Moment of inertias are as follows") printf("\n I1= %0.0f mm^4 and I2= %0.0f mm^4",I1,I2) printf("\n Princial direction are theta1= %0.1f degrees theta2= %0.1f degrees" ,theta1,theta2) printf("\n The moment of inertia along the uv-axis is %0.0f mm^4" ,Iuv)