clc // Given that p1 = 8 // Pressure of entrance in bar t1 = 1125 // Temperature of entrance in K p2 = 1.5 // Pressure of exit in bar n = 11 // No of stages Vf = 110 // Axial velocity of flow in m/s n_p = 0.85 // Polytropic efficiency Vb = 140 // Mean velocity in m/s gama = 1.33 // Heat capacity ratio for gases Cp = 1.15 // Heat capacity of gases in kJ/kgK r = 0.5 // Fraction of reaction printf("\n Example 21.3\n") t2 = t1*((p2/p1)^((gama-1)*n_p/gama)) t2_s = t1*((p2/p1)^((gama-1)/gama)) n_s = (t1-t2)/(t1-t2_s) Wt = Cp*(t1-t2) Wt_s = Wt/n V_w1 = (((Wt_s*1000)/Vb) + Vb)/2 alpha1 = atand(Vf/V_w1) alpha2 = alpha1 beta1 = atand(Vf/(V_w1-Vb)) h_s = Wt_s t_s = h_s/Cp t1_ = t1-t_s t1_s = t1*((t1_/t1)^(gama/((gama-1)*n_p)))^((gama-1)/gama) n_st = (t1-t1_)/(t1-t1_s) printf("\n The blade angle at the inlet = %f degree,and at the exit = %f degree,\n The overall efficiency of the turbine = %f percent\n The stage efficiency = %f percent",alpha1,beta1,n_s*100,n_st*100) // The answers given in the book contain round off error.