Bf=1200//width of flange, in mm Bw=200//breadth of web, in mm Df=100//thickness of flange, in mm d=400//effective depth, in mm sigma_cbc=7//in MPa sigma_st=190//in MPa m=13.33//modular ratio Ast=4*0.785*18^2//four 18 mm dia bars, in sq mm //assume x < Df; find x using Bf(x^2)/2=mAst(d-x), which becomes of the form px^2+qx+r=0 p=Bf/2 q=m*Ast r=-m*Ast*d //solving quadratic equation x=(-q+sqrt(q^2-4*p*r))/(2*p)//in mm //x < Df; hence our assumption is correct //to find critical depth of neutral axis Xc=d/(1+sigma_st/(m*sigma_cbc))//in mm //as x < Xc, beam is under-reinforced sigma_cbc=sigma_st/m*x/(d-x)//in MPa //taking moments about tensile steel Mr=Bf*x*sigma_cbc*(d-x/3)/2//in N-mm mprintf("Moment of resistance of the beam=%f kN-m", Mr/10^6)