R=0.15//rise, in m t=0.3//tread, in m sigma_cbc=5//in MPa sigma_st=230//in MPa l1=1.8+1.5//span for flight AB, in m l2=1.2+1.5+1.5//span for flight BC, in m l3=1.8+1.5//span for flight CD, in m //assuming 50 mm slab thickness per 1 m of span D=50*l2//slab thickness, in mm W1=D/10^3*25*1.5*sqrt(R^2+t^2)/t//slab load on plan, in kN/m W2=1/2*R*t*1.5*25/t//load of step per metre, in kN/m W3=1.5*5//live load, in kN/m W=W1+W2+W3//in kN/m //bending moment //(a) flight AB and CD, refer Fig. 10.9 Rb=(W/2*1.5*(1.8+1.5/2)+W*1.8^2/2)/(1.5+1.8)//in kN Ra=W/2*1.5+W*1.8-Rb//in kN x=Ra/Rb//point of zero shear force from Ra, in m M1=Ra*x-W*x^2/2//maximum bending moment, in kN-m //(b) flight BC, refer Fig. 10.10 Rb=(W/2*1.5^2/2+W*1.2*(1.2/2+1.5)+W/2*1.5*(1.5+1.2+1.5/2))/(1.5+1.2+1.5)//in kN Rc=Rb//in kN //maximum bending moment will be at centre M2=Rb*(1.5+1.2/2)-W/2*1.5*(1.5/2+1.2/2)-W*(1.2/2)^2/2//maximum bending moment, in kN-m M=max(M1,M2)//in kN/m d=sqrt(M*10^6/0.65/1.5/10^3)//in mm //assume 10 mm dia bars dia=10//in mm D=d+dia/2+25//< 210 mm (assumed value) D=210//in mm d=D-dia/2-25//in mm //steel //flight AB and CD z=0.9*d//in mm Ast=M1*10^6/sigma_st/z//in sq mm s1=1500*0.785*dia^2/Ast//spacing of 10 mm dia bars, in mm s1=210//round-off, in mm Ads=0.12/100*D*1.5*10^3//distribution steel, in sq mm //provide 6 mm dia bars s2=1000*0.785*6^2/Ads//in mm s2=70//round-off, in mm //flight BC Ast=M2*10^6/sigma_st/z//in sq mm s3=1500*0.785*dia^2/Ast//spacing of 10 mm dia bars, in mm s3=130//round-off, in mm //distribution steel is same as flights AB and CD //let span-to-depth ratio be 'a' a=l2*10^3/D //for Fe415 grade steel and pt=.32 MF=1.2//modification factor b=20*MF//permissible span-to-depth ratio //as a < b, hence OK mprintf("Summary of design\nSlab thickness=%d mm\nCover = 25 mm\n(a)Flight AB and CD\nMain steel = 10 mm dia bars @ %d mm c/c\nDistribution steel = 6 mm dia @ %d mm c/c\n(b)Flight BC\nMain steel = 10 mm dia bars @ %d mm c/c\nDistribution steel = 6 mm dia @ %d mm c/c",D,s1,s2,s3,s2) //answer in textbook is incorrect