// Exa 7.2 clc; clear; // Given data n=4; // Fourth order Butterworth low-pass filter fH=1000; // Hz // Solution printf('Let C = 0.1 μF. \n'); C=0.1*10^-6; // Farads // Since fH = 1/(2 * %pi * R*C); // Therefore; R = 1/(2*%pi*fH*C); printf(' The calculated value of R = %.1f kΩ. \n',R/1000); printf(' From Table 7.1, for n=4, we get two damping factors namely,\n alpha1 = 0.765 and alpha2 = 1.848.'); alpha1=0.765; alpha2=1.848; A01 = 3-alpha1; A02 = 3-alpha2; printf('\n'); printf('\n Then the pass band gain A01 = %.3f and A02 = %.3f. \n',A01,A02); printf('\n'); printf(' The transfer function of the normalized second order low-pass Butterworth filter is 2.235 1.152 '); printf('\n ---------------- * ------------------'); printf('\n Sn^2+0.765*Sn+1 Sn^2+1.848*Sn+1 '); // Since A01= 1 + Rf/Ri = 1 + 1.235; printf('\n Since A01= 2.235 so Let Rf1 = 12.35 kΩ and Ri1 = 10 kΩ to make A01 = 2.235.' ); printf('\n Since A02= 1.152 so Let Rf2 = 15.20 kΩ and Ri1 = 100 kΩ to make A01 = 1.152.' ); printf(' \n The circiuit realized is as shown in Fig. 7.7 with component value as mentioned above.');