// Exa 3.2 clc; clear; // Given data // Fig. 3.2(b) represents the non-inverting amplifier R1 = 1000; // Ω Rf = 10000; // Ω Vios = 0.01; // Volts Ib = 300*10^-9; // Amperes Ios = 50*10^-9; // Amperes // Solution printf(' From equation 3.24, we get VoT = '); VoT = (1+(Rf/R1))*Vios + Rf*Ib ; printf(' %d mV. \n ',VoT*1000); Rcomp = 1/((1/R1) + (1/Rf)); // Rf || R1 printf(' The value of Rcomp needed to reduce the effect of Ib is %.1f Ω. \n ',Rcomp); printf(' With Rcomp in the circuit, VoT = '); VoT1 = (1+(Rf/R1))*Vios + Rf*Ios; printf(' %.1f mV. \n ' , VoT1*10^3); printf('\n It can be seen from this example that it is the input offset voltage which is more responsible\n for producing an output offset voltage compared to input bias current Ib or the input offset current Ios.'); // The answer provided in the textbook is wrong.