// Estimating the average flux density in the air gap clc; disp('Example 3.4, Page No. = 3.14') // Given Data MVA = 172;// MVA rating P = 20;// Number of pole D = 6.5;// Diameter in meter L = 1.72;// Core length in meter ys = 64;//Slot Pitch in mm Ws = 22;// Stator slot (open) width in mm lg = 30;// Length of air gap in mm nd = 41;// Number of ventilating ducts Wd = 6;// Width of each ventilating Duct in mm mmf = 27000// Total mmf per pole in A Kf = 0.7;// Field form factor // Estimation of effective air gap area per pole y=Ws/(2*lg);//Ratio for slots Kcs= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots y=Wd/(2*lg);//Ratio for ducts Kcd= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts Kg=Kgs*Kgd;//Total gap expansion factor ATg = 0.87*mmf;// The required for the air gap is 87% of the total mmf per pole in A Bg = ATg/(800000*Kg*lg*10^(-3));// Maximum flux density in air gap in Wb per meter square Bav= Kf*Bg;// Average flux density in air gap in Wb per meter square disp(Bav,'Average flux density in air gap (Wb per meter square)='); //in book answer is .615 Wb per meter square. The provided in the textbook is wrong