// Calculating the flux per pole and length and width of pole and winding height and pole height clc; disp('Example 11.14, Page No. = 11.40') // Given Data // 3 phase star connected selient pole alternator Q = 2500;// kVA rating E = 2400;// Voltage rating (in kV) f = 60;// Frequency (in Hz) rpm = 225;// R.p.m. D = 2.5;// Stator bore (in meter) L = 0.44;// Core length (in meter) Nspp = 3;// Number of slot per pole per phase Ncs = 4;// Number of conductors per slot a = 2;// Circuits per phase Bp = 1.5;// Flux density in pole core (in Wb per meter square) df = 30;// Depth of winding (in mm) Sf = 0.84;// Field widind space factor Cl = 1.2;// Leakage factor Kw = 0.95;// Winding factor qf =1800;// Loss dissipated by field winding h_insulation = 30;// Height of insulation // Calculation of the flux per pole and length and width of pole and winding height and pole height ns = rpm/60;// Synchronous speed (in r.p.s.) p = 2*f/ns;// Number of poles S = 3*p*3.5;// Total number of slots Z = Ncs*S;// Total number of conductors Tph = int(Z/6);// Turns per phase Eph =E/3^(1/2);// Voltage per phase F_pole = Eph*a/(4.44*Tph*f*Kw);// Flux per pole (in Wb) disp(F_pole,'(a) Flux per pole (Wb) ='); Fp = Cl*F_pole;// Flux in pole body (in Wb) Ap = Fp/Bp;// Area of pole body (in meter square) Lp = L;// Length of pole body = Length of armature core bp = Ap/Lp;// Width of pole body disp(Lp,'(b) Length of pole body (meter) ='); disp(bp,' Width of pole body (meter) ='); Iph = Q*1000/(3^(1/2)*E);// Current in each phase Iz = Iph/a;// Current in each conductor ATa = 2.7*Iz*Tph*Kw/p;// Armature mmf per pole (in A) AT_fl = 2*ATa;// Field mmf at full load (in A) hf = AT_fl/(10^(4)*(Sf*df*10^(-3)*qf)^(1/2));// Height of field winding (in meter) disp(hf,'(c) Height of field winding (meter) ='); disp(hf+h_insulation*10^(-3),'(d) Height of pole (meter) ='); //in book answers are 0.049 Wb, 0.44 meter, 0.089 meter, 0.16 meter and 0.19 meter respectively. The answers vary due to round off error