// Calculating the length of air gap clc; disp('Example 11.11, Page No. = 11.35') // Given Data // 3 phase silient pole alternator kVA = 500;// kVA rating V = 3.3;// Voltage rating (in kV) f = 50;// Frequency (in Hz) rpm = 600;// R.p.m. Tph = 180;// Turns per phase Bav = 0.54;// Average flux density (in Wb per meter square) SCR = 1.2;// Short circuit ratio Kw = 0.955;// Winding factor Kg = 1.15;// Gap constraction factor Kf = 0.65;// Since field form factor is equal to the ratio of pole arc to pole pitch // Calculation of the length of air gap ns = rpm/60;// Synchronous speed (in r.p.s.) p = 2*f/ns;// Number of poles Iph = kVA*1000/(3^(1/2)*V*1000);// Armature diameter (in meter) ATa = 2.7*Iph*Tph*Kw/p;// Armature mmf per pole (in A) AT_f0 = SCR*ATa;// No load field mmf per pole Bg = Bav/Kf;// Maximum flux density in air gap (in Wb per meter square) lg = 0.8*AT_f0/(800000*Bg*Kg);// Length of air gap // Since mmf required for gap is 80% of no load field mmf disp(lg*1000,'Length of air gap (mm)='); //in book answer is 5.2 mm. The answers vary due to round off error