//Example_a_9_12 page no:411 clc; //star delta conversion method Zrmag=5; Zrang=0; Zymag=2; Zyang=90; Zbmag=4; Zbang=-90; Vrymag=100; Vryang=0; Vybmag=100; Vybang=-120; Vbrmag=100; Vbrang=-240; Zrymag=Zrmag*Zymag; Zryang=Zrang+Zyang; Zybmag=Zymag*Zbmag; Zybang=Zyang+Zbang; Zbrmag=Zbmag*Zrmag; Zbrang=Zbang+Zrang; Zryreal=Zrymag*cosd(Zryang); Zryimag=Zrymag*sind(Zryang); Zry=Zryreal+(%i*Zryimag); Zybreal=Zybmag*cosd(Zybang); Zybimag=Zybmag*sind(Zybang); Zyb=Zybreal+(%i*Zybimag); Zbrreal=Zbrmag*cosd(Zbrang); Zbrimag=Zbrmag*sind(Zbrang); Zbr=Zbrreal+(%i*Zbrimag); Z=Zry+Zyb+Zbr; Zmag=sqrt(real(Z)^2+imag(Z)^2); Zang=atand(imag(Z)/real(Z)); Zr_ymag=Zmag/Zbmag; Zr_yang=Zang-Zbang; Zy_bmag=Zmag/Zrmag; Zy_bang=Zang-Zrang; Zb_rmag=Zmag/Zymag; Zb_rang=Zang-Zyang; Irmag=Vrymag/Zr_ymag; Irang=Vryang-Zr_yang; Iymag=Vybmag/Zy_bmag; Iyang=Vybang-Zy_bang; Ibmag=Vbrmag/Zb_rmag; Ibang=Vbrang-Zb_rang; Irreal=Irmag*cosd(Irang); Irimag=Irmag*sind(Irang); Ir=Irreal+(%i*Irimag); Iyreal=Iymag*cosd(Iyang); Iyimag=Iymag*sind(Iyang); Iy=Iyreal+(%i*Iyimag); Ibreal=Ibmag*cosd(Ibang); Ibimag=Ibmag*sind(Ibang); Ib=Ibreal+(%i*Ibimag); I1=Ir-Ib; I2=Iy-Ir; I3=Ib-Iy; I1mag=sqrt(real(I1)^2+imag(I1)^2); I1ang=atand(imag(I1)/real(I1)); I2mag=sqrt(real(I2)^2+imag(I2)^2); I2ang=atand(imag(I2)/real(I2)); I2ang=I2ang+180;//converting the angle to positive I3mag=sqrt(real(I3)^2+imag(I3)^2); I3ang=atand(imag(I3)/real(I3)); I3ang=I3ang+180; disp("the line currents are"); disp(I1mag,"the magnitude of current I1 is (in A)"); disp(I1ang,"the angle of current I1 is (in A)"); disp(I2mag,"the magnitude of current I2 is (in A)"); disp(I2ang,"the angle of current I2 is (in A)"); disp(I3mag,"the magnitude of current I3 is (in A)"); disp(I3ang,"the angle of current I3 is (in A)"); Vzrmag=I1mag*Zrmag; Vzrang=I1ang+Zrang; Vzymag=I2mag*Zymag; Vzyang=I2ang+Zyang; Vzbmag=I3mag*Zbmag; Vzbang=I3ang+Zbang; disp("the voltage drop across each star connected load is");//the voltage value varies slightly with text book hence results are rounded off in text book disp(Vzrmag,"the magnitude of voltage drop across Zr resistor is (in V)"); disp(Vzrang,"the angle of voltage drop across Zr resistor is (in degree)"); disp(Vzymag,"the magnitude of voltage drop across Zy resistor is (in V)"); disp(Vzyang,"the angle of voltage drop across Zy resistor is (in degree)"); disp(Vzbmag,"the magnitude of voltage drop across Zb resistor is (in V)"); disp(Vzbang,"the angle of voltage drop across Zb resistor is (in degree)"); Vromag=100/sqrt(3); Vroang=-30; Vyomag=100/sqrt(3); Vyoang=-150; Vbomag=100/sqrt(3); Vboang=-270; Yrmag=1/Zrmag; Yrang=0-Zrang; Yymag=1/Zymag; Yyang=0-Zyang; Ybmag=1/Zbmag; Ybang=0-Zbang; Yrormag=Vromag*Yrmag; Yrorang=Vroang+Yrang; Yyoymag=Vyomag*Yymag; Yyoyang=Vyoang+Yyang; Ybobmag=Vbomag*Ybmag; Ybobang=Vboang+Ybang; Yrorreal=Yrormag*cosd(Yrorang); Yrorimag=Yrormag*sind(Yrorang); Yror=Yrorreal+(%i*Yrorimag); Yyoyreal=Yyoymag*cosd(Yyoyang); Yyoyimag=Yyoymag*sind(Yyoyang); Yyoy=Yyoyreal+(%i*Yyoyimag); Ybobreal=Ybobmag*cosd(Ybobang); Ybobimag=Ybobmag*sind(Ybobang); Ybob=Ybobreal+(%i*Ybobimag); Y=Yror+Yyoy+Ybob; Ymag=sqrt(real(Y)^2+imag(Y)^2); Yang=atand(imag(Y)/real(Y)); Yang=Yang+180;//converting the angle to positive Yrreal=Yrmag*cosd(Yrang); Yrimag=Yrmag*sind(Yrang); Yr=Yrreal+(%i*Yrimag); Yyreal=Yymag*cosd(Yyang); Yyimag=Yymag*sind(Yyang); Yy=Yyreal+(%i*Yyimag); Ybreal=Ybmag*cosd(Ybang); Ybimag=Ybmag*sind(Ybang); Yb=Ybreal+(%i*Ybimag); Yryb=Yr+Yy+Yb; Yrybmag=sqrt(real(Yryb)^2+imag(Yryb)^2); Yrybang=atand(imag(Yryb)/real(Yryb)); Vo_omag=Ymag/Yrybmag; Vo_oang=Yang-Yrybang; Vo_oreal=Vo_omag*cosd(Vo_oang); Vo_oimag=Vo_omag*sind(Vo_oang); Vo_o=Vo_oreal+(%i*Vo_oimag); Vroreal=Vromag*cosd(Vroang); Vroimag=Vromag*sind(Vroang); Vro=Vroreal+(%i*Vroimag); Vyoreal=Vyomag*cosd(Vyoang); Vyoimag=Vyomag*sind(Vyoang); Vyo=Vyoreal+(%i*Vyoimag); Vboreal=Vbomag*cosd(Vboang); Vboimag=Vbomag*sind(Vboang); Vbo=Vboreal+(%i*Vboimag); Vro_=Vro-Vo_o; Vyo_=Vyo-Vo_o; Vbo_=Vbo-Vo_o; Vro_mag=sqrt(real(Vro_)^2+imag(Vro_)^2); Vro_ang=atand(imag(Vro_)/real(Vro_)); Vyo_mag=sqrt(real(Vyo_)^2+imag(Vyo_)^2); Vyo_ang=atand(imag(Vyo_)/real(Vyo_)); Vbo_mag=sqrt(real(Vbo_)^2+imag(Vbo_)^2); Vbo_ang=atand(imag(Vbo_)/real(Vbo_)); disp("the displacement neutral voltages are"); disp(Vro_mag,"the magnitude of voltage across Vro is (in V)"); disp(Vro_ang,"the angle of voltage across Vro is (in degree)"); disp(Vyo_mag,"the magnitude of voltage across Vyo is (in V)"); disp(Vyo_ang,"the angle of voltage across Vyo is (in degree)"); disp(Vbo_mag,"the magnitude of voltage across Vbo is (in V)"); disp(Vbo_ang,"the angle of voltage across Vbo is (in degree)"); Ir_mag=Vro_mag/Zrmag;//value of Ir is wrong in text book calculation Ir_ang=Vro_ang-Zrang; Iy_mag=Vyo_mag/Zymag; Iy_ang=Vyo_ang-Zyang; Iy_ang=Iy_ang+360;//converting to positive angle Ib_mag=Vbo_mag/Zbmag; Ib_ang=Vbo_ang-Zbang; disp("the current in the phases are"); disp(Ir_mag,"the magnitude of current in the R phase is (in A)"); disp(Ir_ang,"the angle of current in the R phase is (in degree)"); disp(Iy_mag,"the magnitude of current in the Y phase is (in A)"); disp(Iy_ang,"the angle of current in the Y phase is (in degree)"); disp(Ib_mag,"the magnitude of current in the B phase is (in A)"); disp(Ib_ang,"the angle of current in the B phase is (in degree)"); //value of Ir is wrong in text book calculation //the voltages value varies slightly with text book hence results are rounded off in text book