// Example 9.1 // Computation for ICQ and VCEQ for case(a),o/p voltage Vo, overall gain of amplifier, gain by the transistor, i/p resistance at base, total i/p resistance, overall current gain & o/p resistance for case(b),minimum value of Re2 ofr case(c) and minimum values of capacitors Cb, Cc and Ce for case(d)// // Page no.366 clc; clear; close; //Given data R1_A=33*10^3; R2_A=10*10^3; VCC=12; VBEQ=0.7; hfe_A=100 Re1_A=1*10^3; Re2_A=470;; Rc=2.2*10^3; R1_B=33*10^3; R2_B=10*10^3; Rs_B=600; Rc_B=2.2*10^3; Re1_B=1*10^3; Re2_B=0; RL1_B=47*10^3; Vs=10*10^-3; hfe_B=150; fs_min=2*10^3; //...................................(A).....................................// //Calculation for VBB// VBB=(R2_A*VCC)/(R1_A+R2_A); //Calculation for Rb// Rb=(R1_A*R2_A)/(R1_A+R2_A); //Calculation for collector current// //for Re2=0: ICQ1=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A))));//IBEQ=(VBB-VBEQ)/(Rb+(hfe*(Re1+Re2))) //for Re2=470 ohm: ICQ2=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A+Re2_A)))); //Calculation for quiescent collector to emitter voltage// //for Re2=0: VCEQ1=VCC-ICQ1*(Rc+Re1_A); //for Re2=470 ohm: VCEQ2=VCC-ICQ2*(Rc+Re1_A+Re2_A); //Calculation for re_dash// //when ICQ=1.94mA: re_dash1=(26*10^-3)/ICQ1;//IEQ=ICQ //when ICQ=1.35mA: re_dash2=(26*10^-3)/ICQ2;//for Re2=470 ohm //...................................(B)....................................// //Calculation for resistance of the parallel combination of Rc and Rl1// Rl1c=(Rc_B*RL1_B)/(Rc_B+RL1_B); Rl2e=0; //Calculation for Vth// Vth=((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B))*Vs; //Calculation for Rth// Rth=1/((1/Rs_B)+(1/R1_B)+(1/R2_B)); //Calculation for Ib// Ib=Vth/(Rth+(hfe_B*(re_dash1+Rl2e))); //Calculation for the output voltage of circuit// Vo=-Rl1c*hfe_B*Ib; //Calculation for overall voltage gain of the circuit// Avs=abs(Vo/Vs); //Calculation for gain of the transistor// Av=abs(Rl1c/(re_dash1+Rl2e)); //Calculation for input resistance at the base// Rin_base=hfe_B*(re_dash1+Rl2e); //Calculation for total input resistance// Rin_total=((1/R1_B)+(1/R2_B)+(1/Rin_base))^-1; //Calculation for overall current gain// AIs=((hfe_B*(Rs_B+Rin_total))/(Rth+(hfe_B*(re_dash1+Rl2e))))*(((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B))); //Calculation for output resistance // Rout=2.2*10^3;//Rout=Rout1=Rc //...................................(C)....................................// //Calculation for a// a=260*10^-3/(hfe_A*(VBB-VBEQ)); //Calculation for minimum value of Re2// Re2_min=(a/(1-(a*hfe_A)))*(Rb+(hfe_A*Re1_A)); //Calculation for re_dash3// re_dash3=Re2_min/10; //Calculation for overall voltage gain of the amplifier// Avs_dash1=abs((hfe_B/(Rth+hfe_B*(Re2_min+re_dash3)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min //Calculation for overall voltage gain of the amplifier by neglecting re_dash// Avs_dash2=abs((hfe_B/(Rth+hfe_B*(Re2_min)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min //...................................(D)....................................// //Calculation for the minimum value Cb_min of the blocking capacitor Cb// Cb_min=1.59/(fs_min*(Rs_B+Rin_total)); //Calculation for the minimum value Cc_min of the coupling capacitor Cc// Cc_min=1.59/(fs_min*(Rc+RL1_B)); //Calculation for the minimum value Ce1_min of the bypass capacitor Ce// Ce1_min=1.59/(fs_min*Re1_A); //Displaying the result in command window printf("\n ......................(A)............................"); printf('\n VBB = %0.2f V',VBB); printf('\n Rb = %0.2f K',Rb*10^-3); printf('\n For Re2=0, Collector current = %0.2f mA',ICQ1*10^3); printf('\n For Re2=470 ohm, Collector current = %0.2f mA',ICQ2*10^3); printf('\n For ICQ=1.94 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ1); printf('\n For ICQ=1.35 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ2); printf('\n For ICQ=1.94 mA and Re2=0,the value of re_dash= %0.2f K',re_dash1); printf('\n For ICQ=1.35 mA and Re2=470 ohm,the value of re_dash = %0.2f ohm',re_dash2); printf("\n \n ......................(B)............................"); printf('\n Resistance of parallel combination of Rc and RL1 = Rl1c = %0.1f K',Rl1c*10^-3); printf('\n Resistance of parallel combination of Re2 and RL2 = Rl2e = %0.0f ',Rl2e); printf('\n Vth = %0.2f mV',Vth*10^3); printf('\n Rth = %0.0f ohm',Rth); printf('\n ac base current = Ib = %0.2f microA',Ib*10^6); printf('\n Output voltage of circuit = Vo = %0.2f V',Vo); printf('\n Overall voltage gain of the circuit = %0.0f ',Avs); printf('\n Gain of the transistor = %0.0f ',Av); printf('\n Input resistance at the base = %0.0f K',Rin_base*10^-3); printf('\n Total input resistance = %0.2f K',Rin_total*10^-3); printf('\n Overall current gain = %0.0f ',AIs); printf("\n \n ......................(C)............................"); printf('\n a = %0.4f ',a); printf('\n Minimum value of Re2 = %0.0f ohm',Re2_min); printf('\n re_dash = %0.1f ohm',re_dash3); printf('\n Overall voltage gain of the amplifier = %0.0f ',Avs_dash1); printf('\n Overall voltage gain of the amplifier by neglecting re_dash = %0.0f ',Avs_dash2); printf("\n \n ......................(D)............................"); printf('\n The minimum value Cb_min of the blocking capacitor Cb = %0.2f microF',Cb_min*10^6); printf('\n The minimum value Cc_min of the coupling capacitor Cc = %0.2f nF',Cc_min*10^9); printf('\n The minimum value Ce1_min of the bypass capacitor Ce = %0.1f microF',Ce1_min*10^6); //Answers are varying due to round off error//