//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999 //Example 8.1 //OS=Windows XP sp3 //Scilab version 5.5.2 clc; clear; //given Case(1) n2=1.45;//refractive index of cladding a=3e-6;//radius of core in m delta=0.0064//fractional change in refractive index lambda0=1.546e-6;//wavelength in m n1=n2/(1-delta);//refractive index of core V=2*(%pi)*a*sqrt((n1^2)-(n2^2))/lambda0;//corresponding dimensionless V number mprintf("\n For fiber 1:"); mprintf("\n V=%.1f at lambda0=%.3f um ",V,lambda0/1e-6);//Division by 10^(-6) to convert into um b=0.41616;//value of dimensionless propagation constant corresponding to V=2 as per given table B=sqrt((n2^2)+b*((n1^2)-(n2^2)));//corresponding value of Beta/k0 mprintf("\n Beta/k0=%f",B);//The answers vary due to round off error //given Case(2) n2=1.45;//refractive index of cladding a=2e-6;//radius of core in m delta=0.010//fractional change in refractive index lambda0=1.288e-6;//wavelength in m n1=n2/(1-delta);//refractive index of core V=2*(%pi)*a*sqrt((n1^2)-(n2^2))/lambda0;//corresponding dimensionless V number mprintf("\n For fiber 2:"); mprintf("\n V=%.1f at lambda0=%.3f um ",V,lambda0/1e-6);//Division by 10^(-6) to convert into um b=0.41616;//value of dimensionless propagation constant corresponding to V=2 as per given table B=sqrt((n2^2)+b*((n1^2)-(n2^2)));//corresponding value of Beta/k0 mprintf("\n Beta/k0=%f",B);//The answers vary due to round off error