clc; clear; sigma_p=1000 //conductivity of p-junction in ohm^-1*m^-1 sigma_n=20 //conductivity of n-junction in ohm^-1*m^-1 myu_p=0.05 //in m^2/V*s myu_n=0.13 //in m^2/V*s K=8.61*10^-5 //Boltzmann constant in eV/K T=300 //in K V=0.4 //forward bias voltage in V e=1.602*10^-19 //in J ni=1.5*10^16 //in m^-3 tau_n=10^-6 //minority carrier lifetime in s tau_p=5*10^-6 //in s Const=0.026 //constant for kT/e in V hole_current=0.603*10^-6 //in A electron_current=0.016*10^-6 //in A //Calculation pp0=sigma_p/(e*myu_p) //majority carrier densities in m^-3 nn0=sigma_n/(e*myu_n) //in m^-3 np0=ni^2/pp0 //minority carrier densities in m^-3 pn0=ni^2/nn0 //in m^-3 Dn=myu_n*K*T //in m^2/s Dp=myu_p*K*T //in m^2/s Ln=sqrt(Dn*tau_n) //in m Lp=sqrt(Dp*tau_p) //in m Js=(((e*np0*Ln)/tau_n)+((e*pn0*Lp)/tau_p)) Ratio=(hole_current)/(electron_current) J=Js*(exp(V/Const)-1) mprintf("1)\nReverse bias stauration current density= %0.3e A/m^2\n",Js) //The answers vary due to round off error mprintf("2)\nRatio of hole to electron current= %2.2f \n",Ratio) mprintf("3)\nTotal current density= %2.2f A/m^2",J) //The answers vary due to round off error