clc; clear; delp=4*10^14 //excess EHP in cm^-3 deln=4*10^14 //excess EHP in cm^-3 n0=10^15 //donor atoms in cm^-3 p0=0 //in cm^-3 t=0.5*10^-6 //hole-lifetime in s myu_n=1200 //mobility of electron in cm^2/V*s myu_p=400 //mobility of hole in cm^2/V*s q=1.6*10^-19 //electron charge in eV ni=1.5*10^10 //in cm^-3 Const=0.0259 //constant value for kT in eV //Calculation //a) gop=delp/t //b) rho_0=(q*n0*myu_n)^-1 //Before illumination n=n0+deln //in cm^-3 p=p0+delp //in cm^-3 rho=1/(q*((myu_n*n)+(myu_p*p)))//conductivity rho1=q*myu_p*delp //in mho/cm Pcond=(rho*rho1)*100 //c) delE_e=Const*log(n/ni) delE_h=Const*log(p/ni) mprintf("a)\n") mprintf("photo generation rate= %g EHPs/cm^3s\n",gop) mprintf("b)\n") mprintf("resistivity before illumination= %1.2f ohm-cm\n",rho_0) mprintf("resistvity after illumination= %1.3f ohm-cm\n",rho) mprintf("percent of conductivity= %1.2f percent\n",Pcond) //The answers vary due to round off error mprintf("c)\n") mprintf("quasi Fermi level due to electron=Efi+%0.3f eV\n",delE_e) mprintf("quasi Fermi level due to holes=Efi-%0.3f eV\n",delE_h)