clc printf("\n") //Given OC=9//inches CP=36//inches XC=12//inches X=40//degrees CM=6.98//from the scaled figure N1=240//rpm N2=240//rpm (instantaneous) with angular aceleration (ao) 100 rad/s^2 ao=100 //rad/s^2 w=(%pi*N1/30) a=w^2*(OC/12) printf("Centripetal acceleration = %.f ft/s^2\n",a) Wr=w*CM/CP//rad/s^2 f1=Wr^2*(CP/12)//centripetal component of acceleration of p realtive to C //Solution a) //given from fig 58(a) tp=296 cp=306 ox=422 f2=tp //Tangential component of acceleration of p realtive to C f3=cp//acceleration of p realtive to C fx=ox//acce;eration of x ar=f2/(CP/12)//angular acceleration of rod printf("Case a) \nap= %.f ft/s^2,\nax= %.f ft/s^2 and\nar= %.1f rad/s^2 \n",f3,fx,ar) //Solution b) //given from fig 58(b) oc1=474 oc=480 pt=238 pc=246 xo=452 f4=pt//Tangential component of acceleration of p realtive to C f5=pc//acceleration of p realtive to C Ar=f4/(CP/12)//angular acceleration of rod f6=ao*(OC/12)//tangential component of acceleration realtive to C Fx=xo//acce;eration of x printf("Case b) \nap= %.f ft/s^2,\nax= %.f ft/s^2 and\nar= %.1f rad/s^2 \n",f4,Fx,Ar)