// Example 9.10 // Repeat the example 9.9 assuming 90 % leading power factor // Determine (a) Excitation voltage (b) Power angle (c) No load voltage, // assuming the field current is not changed (d) Voltage regulation (e) No load // voltage if the field current is reduced to 80% of its value at rated load. // Page 372 clc; clear; close; // Given data V=4800; // Voltage of synchronous generator PF=0.900; // Lagging power factor S_Mag=1000000/3; Xa_Mag=13.80; // Synchronous reactance Xa_Ang=90; Vt_Ang=0; // (a) Excitation voltage Vt=V/sqrt(3); Theta=acosd(PF); // Angle Ia_Magstar=S_Mag/Vt; // Magnitude of curent Ia_Angstar=Theta-0; // Angle of current Ia_Mag=Ia_Magstar; Ia_Ang=Ia_Angstar; // Ef=Vt+Ia*j*Xa // First compute Ia*Xa IaXa_Mag=Ia_Mag*Xa_Mag; IaXa_Ang=Ia_Ang+Xa_Ang; // Polar to Complex form for IaXa IaXa_R=IaXa_Mag*cos(-IaXa_Ang*%pi/180); // Real part of complex number IaXa_I=IaXa_Mag*sin(IaXa_Ang*%pi/180); // Imaginary part of complex number // Vt term in polar form Vt_Mag=Vt; Vt_Ang=Vt_Ang; // Polar to Complex form for Vt Vt_R=Vt_Mag*cos(-Vt_Ang*%pi/180); // Real part of complex number Vt_I=Vt_Mag*sin(Vt_Ang*%pi/180); // Imaginary part of complex number // Ef in complex form Ef_R=IaXa_R+Vt_R; Ef_I=IaXa_I+Vt_I; Ef=Ef_R+%i*Ef_I; // Complex to Polar form for Ef Ef_Mag=sqrt(real(Ef)^2+imag(Ef)^2); // Magnitude part Ef_Ang= atan(imag(Ef),real(Ef))*180/%pi; // Angle part
 // (b) Power angle PA=Ef_Ang; // (c) No load voltage, assuming the field current is not changed // From figure 9.23 (b) VolAxis=Vt_Mag/30; // The scale at the given voltage axis Ef_loc=Ef_Mag/VolAxis; // Location of Ef voltage Vnl=29*VolAxis; // No load voltage // (d) Voltage regulation VR=(Vnl-Vt)/Vt*100; // Display result on command window printf("\n Excitation voltage = %0.0f V ",Ef_Mag); printf("\n Power angle = %0.1f deg ",PA); printf("\n No load voltage = %0.0f V ",Vnl); printf("\n Voltage regulation = %0.2f Percent ",VR); disp('The leading power factor resulted in a negativr voltage regulation')