// Example 2.5 // Computation of (a) Equivalent impedance of the transformer referred to the // high side (b) Input impedance of the combined transformer and load (C) Actual // input voltage at the high side (d) Input impedance if the load is disconnected // (e) Exciting current for the conditions in (d) // Page No. 60 clc; clear; close; // Given data S=75000; // Transformer ratings VLS=240; // Low side voltage magnitude PF=0.96; // Lagging power factor VLS_Ang=0; // Low side voltage angle VL=240; // Load voltage VHS=4800; // High side voltage RHS=2.488; // High side resistance RLS=0.00600; // Low side resistance XHS=4.8384; // High side reactance XLS=0.0121 // Low side reactance Rfe=44202; // High side resistance Xm=7798.6; // High side reactance // (a) Equivalent impedance of the transformer referred to the // high side ILS=S*1/2/VLS; // Delivering one-half rated load Theta=acosd(PF); // Angle ThetaI=0-Theta; ZloadLS_Mag=VLS/ILS; // Low side impedance magnitude ZloadLS_Ang=VLS_Ang-ThetaI; // Low side impedance angle a=VHS/VL; // Ratio of High side and low side voltages Zeq_LS=RHS+a^2*RLS+%i*(XHS+a^2*XLS) // Complex to Polar form... Zeq_Mag=sqrt(real(Zeq_LS)^2+imag(Zeq_LS)^2); // Magnitude part Zeq_Ang= atan(imag(Zeq_LS),real(Zeq_LS))*180/%pi; // Angle part
 // (b) Input impedance of the combined transformer and load ZloadHS_Mag=a^2*ZloadLS_Mag; // High side impedance magnitude ZloadHS_Ang=ZloadLS_Ang; // High side impedance angle // Polar to Complex form ZloadHS_R=ZloadHS_Mag*cos(-ZloadHS_Ang*%pi/180); // Real part of complex number ZloadHS_I=ZloadHS_Mag*sin(ZloadHS_Ang*%pi/180); // Imaginary part of complex number Zin=ZloadHS_R+%i* ZloadHS_I+Zeq_LS; // Input impedance // Complex to Polar form... Zin_Mag=sqrt(real(Zin)^2+imag(Zin)^2); // Magnitude part Zin_Ang= atan(imag(Zin),real(Zin))*180/%pi; // Angle part
 // (c) Actual input voltage at the high side IHS=ILS/a; // High side current VT=IHS*Zin_Mag; // (d) Input impedance if the load is disconnected X=(1/Rfe)+(1/Xm*%i); ZinOC=1/X; // Input impedance ZinOC_Mag=sqrt(real(ZinOC)^2+imag(ZinOC)^2); // Magnitude part ZinOC_Ang= atan(imag(ZinOC),real(ZinOC))*180/%pi; // Angle part
 ZinOC_Ang=ZinOC_Ang*-1; // (e) Exciting current for the conditions in (d) I0_Mag=VT/ZinOC_Mag; // Magnitude of current I0_Ang=0-ZinOC_Ang; // Angle of current // Display result on command window printf("\n Equivalent impedance of the transformer magnitude = %0.2f Ohm ",Zeq_Mag); printf("\n Equivalent impedance of the transformer angle = %0.1f deg ",Zeq_Ang); printf("\n Input impedance of the combined transformer and load magnitude = %0.2f Ohm ",Zin_Mag); printf("\n Input impedance of the combined transformer and load angle = %0.2f deg ",Zin_Ang); printf("\n Actual input voltage at the high side = %0.0f V", VT); printf(" \n Input impedance magnitude when load is disconnected = %0.0f Ohm",ZinOC_Mag); printf(" \n Input impedance angle when load is disconnected = %0.2f deg",ZinOC_Ang); printf(" \n Exciting current magnitude = %0.2f A",I0_Mag); printf(" \n Exciting current angle = %0.0f deg",I0_Ang);