// Example 2.3 // Computation of (a) Exciting current and its quadrature components // (b) Equalizing magnetic reactance and equivalent core loss resistance // (c) Magnetizing current (d)repeat (a) and (b) for the transformer in the // step up mode //Page No. 44 clc; clear; close; Fp=0.210; // Power factor Pcore=138; // Active power VT=2400; // Voltage applied to primary VT1=240; // 240-V primary voltage -- Second case // (a)Exciting current and its quadrature components Theta=acosd(Fp); // Angle Thetai=-Theta; // As phase angle of applied voltage is zero Ife=Pcore/VT; // Exciting current I0=Ife/Fp; // Quadrature component Im=tand(Thetai)*Ife; // Quadrature component Im=Im*-1; // (b) Equalizing magnetic reactance and equivalent core loss resistance XM=VT/Im; // Magnetic reactance Rfe=VT/Ife; // Core-loss resistance XM=XM/1000; Rfe=Rfe/1000; //(c) Magnetizing current Ife1=Pcore/VT1; // Exciting current I01=Ife1/cosd(Thetai); IM1=tand(Thetai)*Ife1; // Quadrature component IM1=IM1*-1; //(d) repeat (a) and (b) for the transformer in the step up mode XM1=VT1/IM1; // Magnetizing reactance Rfe1=VT1/Ife1; // Core-loss resistance //Display result on command window printf("\n Exciting current = %0.4f A ",Ife); printf("\n Exciting current quadrature component 1 = %0.4f A ",I0); printf("\n Exciting current quadrature component 2 = %0.3f A ",Im); printf("\n Equivalent magnetic reactance = %0.2f kOhm ",XM); printf("\n Equivalent core loss resistance = %0.1f kOhm ",Rfe); printf("\n Exciting current in step-up mode = %0.3f A ",Ife1); printf("\n Exciting current in step-up mode quadrature component 1 = %0.2f A ",I01); printf("\n Exciting current in step-up mode quadrature component 2 = %0.2f A ",IM1); printf("\n Equivalent magnetic reactance in the step up mode = %0.1f Ohm ",XM1); printf("\n Equivalent core loss resistance in the step up mode = %0.1f Ohm ",Rfe1);