//Example 17.8// a=23*10^18;//m^-3 q=0.16*10^-18;//C //1 coulomb of charge b=0.364;//m^2/(V.s)//Electron mobility of germanium c=0.190;//m^2/(V.s) //Hole Mobility of Germanium s300K=a*q*(b+c) mprintf("s300K = %f ohm^-1 m^-1",s300K) Eg=0.66;//V //band gap k=86.2*10^-6;//eV/K //Boltzmann constant T=300;//K //absolute temperature s0=s300K*%e^((Eg)/(2*k*T)) mprintf("\ns0 = %e ohm^-1 m^-1",s0) Eg1=-0.66;//eV//band gap i=60;//ohm^-1 m^-1 //extrinsic conductivity j=log(i/s0);// Taking log to remove exponential term //mprintf("j = %f ",j) T1=1/((j*2*k)/Eg1);//(Cross multiply and dividing) mprintf("\nT1 = %i K = 135degree C",T1) //(b) Ed=0.012;//eV T2=373;//K //absolute temperature s1=i*%e^((Ed)/(k*T2)) mprintf("\ns1 = %f ohm^-1 m^-1",s1) //At 300K T3=300;//K //absolute temperature s2=s1*%e^-((Ed)/(k*T3)) mprintf("\ns2 = %f ohm^-1 m^-1",s2)