clc // Fundamental of Electric Circuit // Charles K. Alexander and Matthew N.O Sadiku // Mc Graw Hill of New York // 5th Edition // Part 2 : AC Circuits // Chapter 14 : Frequency Response // Example 14 - 8 clear; clc; close; // // Given data R = 8000.0000; L = 0.00020; C = 8 * 10^(-6); Vm = 10.0000; // // Calculations Resonant Frequency Wo = 1/sqrt(L*C) // Calculations Quality Factor and Bandwidth Q = R/(Wo*L); B = Wo/Q; // Calculations The Lower Half Power Frequency and The Upper Power Frequency W1 = Wo - (B/2); W2 = Wo + (B/2); // Calculations Power Dissipated at Wo, W1 and W2 P_wo = Vm^2/(2*R); P_w1 = Vm^2/(4*R) P_w2 = P_w1; // disp("a. The Resonant Frequency, Bandwidth and Quality Factor: "); printf(" \n Wo = Resonant Frequency = %.3f krad/s",Wo/1000) printf(" \n B = Bandwidth = %.3f rad/s",B) printf(" \n Q = Imaginary Part of Power Complex = %.3f ",Q) disp("") disp("b. The Resonant Frequency, The Lower dan Upper Power Frequency: "); printf(" \n W1 = The Lower Half Power Frequency = %.3f krad/s",W1/1000) printf(" \n W2 = The Upper Half Power Frequency = %.3f krad/s",W2/1000) disp("") disp("c. Power Dissipated at Wo, W1 and W2"); printf(" \n P_wo = Power Dissipated at Wo = %.3f mW",P_wo*1000) printf(" \n P_w1 = Power Dissipated at W1 = %.3f mW",P_w1*1000) printf(" \n P_w2 = Power Dissipated at W2 = %.3f mW",P_w2*1000)