clc // Fundamental of Electric Circuit // Charles K. Alexander and Matthew N.O Sadiku // Mc Graw Hill of New York // 5th Edition // Part 2 : AC Circuits // Chapter 11 : AC power Analysis // Example 11 - 13 clear; clc; close; // // Given data Z_line = complex(4,2) Z_load = complex(15,-10) S_load = 12.0000; pf_load = 0.8560; Vrms_mag = 220.0000; Vrms_angle = 0.0000; Vrms = complex(Vrms_mag*cosd(Vrms_angle),Vrms_mag*sind(Vrms_angle)) // Calculations Real Power and Reactive Power Absorbed by The Source Z_total = Z_line + Z_load; I_total = Vrms/Z_total; I_total_mag = norm(I_total); I_total_angle = atand(imag(I_total),real(I_total)); S_source = Vrms*conj(I_total); P_source = real(S_source); Q_source = imag(S_source); // Calculations Real Power and Reactive Power Absorbed by The Line V_line = Z_line * I_total; S_line = V_line * conj(I_total); P_line = real(S_line); Q_line = imag(S_line); // Calculations Real Power and Reactive Power Absorbed by The Load V_load = Z_load * I_total; S_load = V_load * conj(I_total); P_load = real(S_load); Q_load = imag(S_load); // disp("Example 11-12 Solution : "); disp("a. Real Power and Reactive Power Absorbed By The Source : "); printf(" \n P_Source = Real Power Absorbed By The Source = %.3f KW",P_source) printf(" \n Q_Source = Reactive Power Absorbed By The Source = %.3f Kvar",Q_source) disp("") disp("b. Real Power and Reactive Power Absorbed By The Line : "); printf(" \n P_line = Real Power Absorbed By The Line = %.3f KW",P_line) printf(" \n Q_line = Reactive Power Absorbed By Line = %.3f Kvar",Q_line) disp("") disp("c. Real Power and Reactive Power Absorbed By The Load : "); printf(" \n P_load = Real Power Absorbed By The Load = %.3f KW",P_load) printf(" \n Q_load = Reactive Power Absorbed By Load = %.3f Kvar",Q_load)