// Example 10.6 // to find the nonlinear phase shift at the center of the pulse. Compare the exact results with those obtained using first and second-order perturbation theory // Page no 469 clc; clear; close; //Given data P=6*10^(-3); // The peak power of rectangular pulse L=40*10^3; // Fiber of length Floss=0.2; // The fiber loss (dB/Km) gamm=1.1*10^(-3); alpha=Floss/4.343; // Attenuation coefficient Zeff=(1-exp(-alpha*10^(-3)*L))/alpha*10^3; // The nonlinear phase shift at the center of the pulse phi=gamm*P*Zeff; // Nonlinear phase shift //Displaying results in the command window printf("\n The nonlinear phase shift at the center of the pulse = %0.4f rad ",phi); // Results using first order B01=sqrt(1+gamm^2*P^2*(Zeff)^2); // Amplitude shift thet1=atan(gamm*P*Zeff); // Non-linear phase shift //Displaying results in the command window printf("\n\n Amplitude shift using first order = %0.3f ",B01); printf("\n Non-linear shift using first order = %0.5f rad",thet1); // Results using second order x=1-((gamm)^2/2*P^2*Zeff^2); y=gamm*P*Zeff; thet2=atan(y/x); // Nonlinear phase shift B02=x/cos(thet2); // Amplitude shift //Displaying results in the command window printf("\n\n Amplitude shift using second order = %0.5f ",B02); // Answer is varying due to round-off error printf("\n Non-linear shift using second order = %0.5f rad",thet2); // Answer is varying due to round-off error