clc clear mprintf('Mechanical vibrations by G.K.Grover\n Example 4.11.2\n') //given data fn=5.75//natural frequency in Hz zeta=0.65 ZbyY=1.01 //case 1 //substituting for (Z/Y)=1.01 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows //0.02*r^4-0.31*r^2+1=0 //solving for r in above eqn whose rootes are r1 and r2 r1=sqrt(((0.31)+sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) r2=sqrt(((0.31)-sqrt(((-0.31)^2)-4*0.02*1))/(2*0.02)) if r1>r2 then r=r1 else r=r2 end bet=r//bet=(W/Wn) f1=bet*fn //case 2 ZbyY=0.98 //substituting for (Z/Y)=0.98 and (W/Wn)=r^2 in Eqn 4.4.11 we get the quadratic eqn as follows //0.04*r^4+0.31*r^2-1=0 //solving for r in above eqn whose rootes are r3 and r4 r3=sqrt((-0.31+sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) r4=sqrt((-0.31-sqrt(((0.31)^2)-4*0.04*-1))/(2*0.04)) t1=real(r3) t2=real(r4) if t1>t2 then r=r3 else r=r4 end bet=r//bet=(W/Wn) f2=bet*fn mprintf('The lowest frequency beyond which the amplitude can be measured within\n (i)one percent error is %4.4f Hz\n (ii)two percent error is %4.4f Hz',f1,f2)