clc clear mprintf('Mechanical vibrations by G.K.Grover\n Example 1.8.2\n') //given data T=0.1//time period of periodic motion in sec W=2*%pi/T k=12/2//number of elements in half cycle mprintf('\tNo of elements in one cycle 2k=12,t(j) in degrees\n') mprintf('t(j) f(j) cos(t(j)) f(j)*cos(t(j)) sin(t(j)) f(j)*sin(t(j) cos(2*t(j)) f(j)*cos(2*t(j)) sin(2*t(j)) f(j)*sin(2*t(j)) cos(3*t(j)) f(j)*cos(3*t(j) sin(3*t(j)) f(j)*sin(3*t(j)\n') f(1)=10/6 for j=1:6 t(j)=j*(%pi/k) m(j)=cos(t(j)) n(j)=f(j)*m(j) o(j)=sin(t(j)) p(j)=f(j)*o(j) q(j)=cos(2*t(j)) r(j)=f(j)*q(j) s(j)=sin(2*t(j)) u(j)=f(j)*s(j) v(j)=cos(3*t(j)) x(j)=f(j)*v(j) y(j)=sin(3*t(j)) z(j)=f(j)*y(j) f(j+1)=f(j)+f(1) mprintf('%3.0f\t',t(j)*(180/%pi)) mprintf('%3.4f\t\t',f(j)) mprintf('%3.4f\t\t',m(j)) mprintf('%3.4f\t\t',n(j)) mprintf('%3.4f\t\t',o(j)) mprintf('%3.4f\t\t',p(j)) mprintf('%3.4f\t\t',q(j)) mprintf('%3.4f\t\t',r(j)) mprintf('%3.4f\t\t',s(j)) mprintf('%3.4f\t\t',u(j)) mprintf('%3.4f\t\t',v(j)) mprintf('%3.4f\t\t',x(j)) mprintf('%3.4f\t\t',y(j)) mprintf('%3.4f\n',z(j)) end f(7)=f(j)-f(1) for j=7:12 t(j)=j*(%pi/k) m(j)=cos(t(j)) n(j)=f(j)*m(j) o(j)=sin(t(j)) p(j)=f(j)*o(j) q(j)=cos(2*t(j)) r(j)=f(j)*q(j) s(j)=sin(2*t(j)) u(j)=f(j)*s(j) v(j)=cos(3*t(j)) x(j)=f(j)*v(j) y(j)=sin(3*t(j)) z(j)=f(j)*y(j) f(j+1)=f(j)-f(1) mprintf('%3.0f\t',t(j)*(180/%pi)) mprintf('%3.4f\t\t',f(j)) mprintf('%3.4f\t\t',m(j)) mprintf('%3.4f\t\t',n(j)) mprintf('%3.4f\t\t',o(j)) mprintf('%3.4f\t\t',p(j)) mprintf('%3.4f\t\t',q(j)) mprintf('%3.4f\t\t',r(j)) mprintf('%3.4f\t\t',s(j)) mprintf('%3.4f\t\t',u(j)) mprintf('%3.4f\t\t',v(j)) mprintf('%3.4f\t\t',x(j)) mprintf('%3.4f\t\t',y(j)) mprintf('%3.4f\n',z(j)) end sumf(j)=f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9)+f(10)+f(11)+f(12) sumcos(t(j))=m(1)+m(2)+m(3)+m(4)+m(5)+m(6)+m(7)+m(8)+m(9)+m(10)+m(11)+m(12) sumfjcos(t(j))=n(1)+n(2)+n(3)+n(4)+n(5)+n(6)+n(7)+n(8)+n(9)+n(10)+n(11)+n(12) sumsin(t(j))=o(1)+o(2)+o(3)+o(4)+o(5)+o(6)+o(7)+o(8)+o(9)+o(10)+o(11)+o(12) sumfjsin(t(j))=p(1)+p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)+p(10)+p(11)+p(12) sumcos2(t(j))=q(1)+q(2)+q(3)+q(4)+q(5)+q(6)+q(7)+q(8)+q(9)+q(10)+q(11)+q(12) sumfjcos2(t(j))=r(1)+r(2)+r(3)+r(4)+r(5)+r(6)+r(7)+r(8)+r(9)+r(10)+r(11)+r(12) sumsin2(t(j))=s(1)+s(2)+s(3)+s(4)+s(5)+s(6)+s(7)+s(8)+s(9)+s(10)+s(11)+s(12) sumfjsin2(t(j))=u(1)+u(2)+u(3)+u(4)+u(5)+u(6)+u(7)+u(8)+u(9)+u(10)+u(11)+u(12) sumcos3(t(j))=v(1)+v(2)+v(3)+v(4)+v(5)+v(6)+v(7)+v(8)+v(9)+v(10)+v(11)+v(12) sumfjcos3(t(j))=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8)+x(9)+x(10)+x(11)+x(12) sumsin3(t(j))=y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+y(8)+y(9)+y(10)+y(11)+y(12) sumfjsin3(t(j))=z(1)+z(2)+z(3)+z(4)+z(5)+z(6)+z(7)+z(8)+z(9)+z(10)+z(11)+z(12) a0=sumf(j)/(2*k) a1=sumfjcos(t(j))/k b1=sumfjsin(t(j))/k a2=sumfjcos2(t(j))/k b2=sumfjsin2(t(j))/k a3=sumfjcos3(t(j))/k b3=sumfjsin3(t(j))/k disp('The fourier components of periodic motion shown in example 1.8.1 are as follows') mprintf('\nao=%f\na1=%f\nb1=%f\na2=%f\nb2=%f\na3=%f\nb3=%f\n',a0,a1,b1,a2,b2,a3,b3)