// Example 6 // Ch 2 clc; clear; close; // given data V=400*10^3; // applied voltage in kV r_eq=0.08874; // equivalent radius in meters H=12; // bundle height in meters d=9; // pole to pole spacing in meters Epsilon_o=8.85*10^-12; x=sqrt((2*H)^2 + d^2); Q = (V*2*%pi*Epsilon_o) / [(log(2*H/r_eq)) - log(x/d)]; q = Q/2; printf("charge per bundle is %e C/m \n",Q) printf("charge per subconductor is %e C/m \n",q) r = 0.0175; //subconductor radius in meters R = 0.45; //subconductor-to-subconductor spacing in meters q = 2.44*1e-6; //charge per subconductor in C/m d = 9; //in meters Epsilon_o = 8.85*10^-12; //in F/m x=[(1/r) + (1/R)]; y=[(1/r) - (1/R)]; Max = (q/(2*%pi*Epsilon_o))*(x); //maximum surface field in V/m printf("maximum surface field is %e V/m \n ", Max) Min = (q/(2*%pi*Epsilon_o))*[y]; //minimum surface field in V/m printf("minimum surface field is %f V/m \n", Min) Avg = (q/(2*%pi*Epsilon_o))*[1/r]; //average surface field in V/m printf("average surface field is %f V/m \n", Avg) E_01 = [(q/(2*%pi*Epsilon_o))*[1/r + 1/R]] - [(q/(2*%pi*Epsilon_o))*[1/(d+r)+1/(d+R+r)]];//field at outer point of subconductor in V/m disp(E_01, "field at outer point of subconductor 1(V/m) =") E_02 = [(q/(2*%pi*Epsilon_o))*[1/r + 1/R]] - [(q/(2*%pi*Epsilon_o))*[1/(d-R-r)+1/(d-r)]]; disp(E_02, "field at outer point of subconductor 2(V/m) =") E_l1 = [(q/(2*%pi*Epsilon_o))*[1/r - 1/R] - (q/(2*%pi*Epsilon_o))*[1/(d-r)+1/(d+R-r)]]; disp(E_l1, "field at inner point of subconductor 1(V/m) =") E_l2 = [(q/(2*%pi*Epsilon_o))*[1/r - 1/R] - (q/(2*%pi*Epsilon_o))*[1/(d-R-r)+1/(d+R)]]; disp(E_l2, "field at inner point of subconductor 2(V/m) =") Avg = (E_01 + E_02)/2 // average maximum gradient in V/m disp(Avg, "average maximum gradient is") //answers in the book is wrong for subconductor 2, El1 and El2