printf("\t example 7.4 \n"); printf("\t approximate values are mentioned in the book \n"); T1=93; // inlet hot fluid,F T2=85; // outlet hot fluid,F t1=75; // inlet cold fluid,F t2=80; // outlet cold fluid,F W=175000; // lb/hr w=280000; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for distilled water \n"); c=1; // Btu/(lb)*(F) Q=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for distilled water is : %.1e Btu/hr \n",Q); printf("\t for raw water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for raw water is : %.1e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); R=((T1-T2)/(t2-t1)); printf("\t R is : %.2f \n",R); S=((t2-t1)/(T1-t1)); printf("\t S is : %.3f \n",S); printf("\t FT is 0.945 \n"); // from fig 18 delt=(0.945*LMTD); // F printf("\t delt is : %.2f F \n",delt); X=((delt1)/(delt2)); printf("\t ratio of two local temperature difference is : %.3f \n",X); Fc=0.42; // from fig.17 Kc=0.20; // crude oil controlling Tc=((T2)+(T1))/2; // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc); tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.1f F \n",tc); printf("\t hot fluid:shell side,distilled water \n"); ID=15.25; // in C=0.1875; // clearance B=12; // baffle spacing,in PT=0.9375; as=((ID*C*B)/(144*PT)); // flow area,ft^2,using eq.7.1 printf("\t flow area is : %.3f ft^2 \n",as); Gs=(W/as); // mass velocity,lb/(hr)*(ft^2),using eq.7.2 printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gs); mu1=0.81*2.42; // at 89F,lb/(ft)*(hr), from fig.14 De=0.55/12; // from fig.28,ft Res=((De)*(Gs)/mu1); // reynolds number printf("\t reynolds number is : %.2e \n",Res); jH=73; // from fig.28 c=1; // Btu/(lb)*(F),at 89F,from fig.table 4 k=0.36; // Btu/(hr)*(ft^2)*(F/ft), from table 4 Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.3f \n",Pr); ho=((jH)*(k/De)*(Pr)); // using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.2e Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t cold fluid:inner tube side,raw water \n"); Nt=160; n=2; // number of passes L=16; //ft at1=0.334; // flow area, in^2,from table 10 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.3e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*62.5)); printf("\t V is %.1f fps \n",V); mu2=0.92*2.42; // at 77.5F,lb/(ft)*(hr) D=0.65/12; //ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); hi=1350*0.99; //using fig.25,Btu/(hr)*(ft^2)*(F) ID=0.65; // ft OD=0.75; //ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); printf("\t ·when both. film coefficients are high the thermal resistance of the tube metal is not necessarily insignificant as assumed in the derivation of Eq. (6.38). For a steel 1.8 BWG tube Rm= 0.00017 and for copper Rm= 0.000017 \n"); A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10 A=(Nt*L*A2); // ft^2 printf("\t total surface area is : %.0f ft^2 \n",A); UD=((Q)/((A)*(delt))); printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for annulus \n"); f=0.0019; // friction factor for reynolds number 16200, using fig.29 s=1; // for reynolds number 25300,using fig.6 Ds=15.25/12; // ft phys=1; N=(12*L/B); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi printf("\t delPs is : %.1f psi \n",delPs); printf("\t allowable delPs is 10 psi \n"); printf("\t pressure drop for inner pipe \n"); f=0.00019; // friction factor for reynolds number 36400, using fig.26 s=1; phyt=1; D=0.054; // ft delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi printf("\t delPt is : %.1f psi \n",delPt); X1=0.33; // X1=((V^2)/(2*g)), for Gt 1060000,using fig.27 delPr=((4*n*X1)/(s)); // using eq.7.46,psi printf("\t delPr is : %.1f psi \n",delPr); delPT=delPt+delPr; // using eq.7.47,psi printf("\t delPT is : %.1f psi \n",delPT); printf("\t allowable delPT is 10 psi \n"); //end