printf("\t example 6.3 \n"); printf("\t approximate values are mentioned in the book \n"); T1=450; // inlet hot fluid,F T2=350; // outlet hot fluid,F t1=300; // inlet cold fluid,F t2=310; // outlet cold fluid,F W=6900; // lb/hr w=72500; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for lube oil \n"); c=0.62; // Btu/(lb)*(F) Q=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for lube oil is : %.2e Btu/hr \n",Q); printf("\t for crude oil \n"); c=0.585; // Btu/(lb)*(F) Q1=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for crude oil is : %.2e Btu/hr \n",Q1); // calculation mistake in book delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); A=((delt1)/(delt2)); printf("\t ratio of two local temperature difference is : %.3f \n",A); Fc=0.395; // from fig.17 Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc); tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); printf("\t hot fluid:annulus,lube oil \n"); D1=0.199; // ft D2=0.256; // ft aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2 printf("\t flow area is : %.4f ft^2 \n",aa); De=(D2^2-D1^2)/D1; // equiv diameter,ft printf("\t equiv diameter is : %.2f ft \n",De); Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Ga); mu1=3*2.42; // at 389.5F,lb/(ft)*(hr), from fig.14 Rea=((De)*(Ga)/mu1); // reynolds number printf("\t reynolds number is : %.0e \n",Rea); jH=20.5; // from fig.24 c=0.615; // Btu/(lb)*(F),at 130F k=0.067; // Btu/(hr)*(ft^2)*(F/ft), from table 4 Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.3f \n",Pr); Ho=((jH)*(k/De)*(Pr)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Ho); printf("\t cold fluid:inner pipe,crude oil \n"); D=0.172; // ft ap=((%pi)*(D^2)/4); // flow area, ft^2 printf("\t flow area is : %.4f ft^2 \n",ap); Gp=(w/(2*ap)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gp); mu2=0.83*2.42; // at 304 F,lb/(ft)*(hr) Rep=((D)*(Gp)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Rep); jH=320; // from fig.24 c=0.585; // Btu/(lb)*(F),at 304F,from fig.4 k=0.073; // Btu/(hr)*(ft^2)*(F/ft), from fig.1 Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.3f \n",Pr); Hi=((jH)*(k/D)*(Pr)*(1^0.14)); //Hi=(hi/phyp),using eq.6.15a,Btu/(hr)*(ft^2)*(F) printf("\t Hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hi); ID=2.067; // ft OD=2.38; //ft Hio=((Hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5 printf("\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hio); muw=0.77*2.42; // lb/(ft)*(hr), from fig.14 phyp=(mu2/muw)^0.14; printf("\t phyp is : %.0f \n",phyp); // from fig.24 hio=(Hio)*(1); // from eq.6.37 printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); tw=(tc)+(((Ho)/(Hio+Ho))*(Tc-tc)); // from eq.5.31 printf("\t tw is : %.0f F \n",tw); muw=6.6*2.42; // lb/(ft)*(hr), from fig.14 phya=(mu1/muw)^0.14; printf("\t phya is : %.1f \n",phya); // from fig.24 ho=(Ho)*(phya); // from eq.6.36 printf("\t Correct h0 to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.006; // required by problem,(hr)*(ft^2)*(F)/Btu UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); A=((Q)/((UD)*(LMTD))); // required surface,ft^2 printf("\t required surface is : %.0f ft^2 \n",A); A1=0.622; // From Table 11,ft^2 Lr=(A/A1); // required length;lin ft printf("\t required length is : %.0f lin ft \n",Lr); printf("\t Since two parallel streams are employed, use eight 20 ft hairpins or 320 lin. feet \n"); L=320; A2=320*0.622; // actual surface supplied,ft^2 printf("\t actual surface supplied is : %.1f ft^2 \n",A2); UD=((Q)/((A2)*(LMTD))); printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for annulus \n"); De1=.058; //ft printf("\t De1 is : %.3f ft \n",De1); Rea1=((De1)*(Ga)/7.25); // reynolds number printf("\t reynolds number is : %.2e \n",Rea1); f=(0.0035)+((0.264)/(2680^0.42)); // friction factor, using eq.3.47b printf("\t friction factor is : %.4f \n",f); s=0.775; row=62.5*0.775; // from fig 6 delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft printf("\t delFa is : %.1f ft \n",delFa); V=((Ga)/(3600*row)); //fps printf("\t V is : %.1f fps \n",V); delFl=((8*(V^2))/(2*32.2)); //ft printf("\t delFl is : %.2f ft \n",delFl); delPa=((delFa+delFl)*(row)/144); // psi printf("\t delPa is : %.1f psi \n",delPa); printf("\t allowable delPa is 10 psi \n"); printf("\t pressure drop for inner pipe \n"); f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b printf("\t friction factor is : %.5f \n",f); s=0.76; row=62.5*0.76; // from table 6 Lp=160; delFp=((4*f*(Gp^2)*Lp)/(2*4.18*(10^8)*(row^2)*(D))); // ft printf("\t delFp is : %.1f ft \n",delFp); delPp=((delFp)*(row)/144); // psi printf("\t delPp is : %.1f psi \n",delPp); printf("\t allowable delPp is 10 psi \n"); // end