printf("\t example 20.7 \n"); printf("\t approximate values are mentioned in the book \n"); T1=284; // inlet hot fluid,F T2=104; // outlet hot fluid,F t1=86; // inlet cold fluid,F t2=104; // outlet cold fluid,F W=1000; // lb/hr k=0.15; // thermal conductivity L=10; Beta=((2*k)/(500*(2/12))); // hoi=500Btu/(hr)*(ft^2)*(F) for water printf("\t beta is : %.4f \n",Beta); printf("\t for sand \n"); C=0.2; // Btu/(lb)*(F) Q=((W)*(C)*(T1-T2)); // Btu/hr printf("\t total heat required for sand is : %.1e Btu/hr \n",Q); c=1; w=(Q/(t2-t1)); printf("\t w is : %.0e lb/hr \n",w); R=((W*C)/(w*c)); printf("\t R is : %.1f \n",R); S=((T2-T1)/(t1-T1)); printf("\t S is : %.2f \n",S); W1=(8.33*(k*L)/C); // ((W1*C)/(k*L))=8.33 from fig 20.20b for Beta=0 printf("\t rate per tube is : %.1f lb/hr \n",W1); N1=(W/W1); printf("\t number of tubes : %.0f \n",N1); printf("\t for air assume hoi=9 and Beta=0.2 \n"); c1=0.25; w1=(Q/(c1*(t2-t1))); printf("\t w1 is : %.0e lb/hr \n",w1); W2=(5.23*(k*L)/C); // ((W1*C)/(k*L))=5.23 from fig 20.20b for Beta=0.2 printf("\t rate per tube is : %.0f lb/hr \n",W2); N2=(W/W2); printf("\t number of tubes : %.0f \n",N2); // end