printf("\t example 20.5 \n"); printf("\t approximate values are mentioned in the book \n"); Nt=25; // number of tubes A=50; // total projected area Tav=100; // F s=28; // assumption spray, lb/(min)*(ft^2) Do=0.0833; // ft PH=0.1562; Y=0.874; Z=0.466; E=(0.171*(Do*Y*Z)^0.1); // (E/(Do*Y*Z)^0.1)=0.171, from fig 20.10 printf("\t evaporation percentage is : %.2f \n",E); Q=(295*500*(143-130)); printf("\t heat load is : %.2e Btu/hr \n",Q); Q1=(Q*(1-0.12)); printf("\t sensible heat is : %.2e Btu/hr \n",Q1); t2=(90)+(Q1/(28*60*50)); printf("\t final spray temperature is : %.0f F \n",t2); w=(s*60*50); printf("\t total spray : %.1e lb/hr \n",w); m=(w/(2*4*12)); printf("\t m is : %.0f lb/(hr)*(ft^2) \n",m); mu=1.84; // lb/(ft)*(hr) Z=((m^0.3)*Do*Y*Z/(mu*0.125)); printf("\t Z is : %.2f \n",Z); N=3; // assume 3 horizontal rows ho=300*(N^0.05); // (ho/(N^0.05))=300, from fig 20.11 printf("\t ho is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t tube side coefficient \n"); printf("\t assuming even number of passes and tube side velocity about 8fps \n"); at=0.0775; // ft^2 Gt=(295*500/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*62.5)); printf("\t velocity is : %.2f fps \n",V); hi=2140; // Btu/(hr)*(ft^2)*(F), fig 25 ID=0.87; // ft OD=1; // ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hio to the surface at the OD is : %.2e Btu/(hr)*(ft^2)*(F) \n",hio); Uc=((ho*hio)/(ho+hio)); // from eq 6.38 printf("\t Uc is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); a=0.2618; // ft^2, table 11 A1=(2*3*25*12*a); printf("\t total surface is : %.0f ft^2 \n",A1); T1=143; // inlet hot fluid,F T2=130; // outlet hot fluid,F t1=90; // inlet cold fluid,F t2=110; // outlet cold fluid,F delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); // calculation mistake in book R=0.65; S=0.377; FT=0.97; // fig 18 delt=(FT*LMTD); printf("\t delt is : %.1f F \n",delt); UD=(Q/(A1*(delt))); printf("\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t The assumption of three horizontal rows is satisfactory, since a dirt factor of 0.004 was required \n"); // end